Results:
Both the even and old cases admit elementary close-form solutions
\begin{align}
&\int_0^{\pi/2}\frac1{\sin^{2n}x+\cos^{2n}x}dx
=\frac{2^{n-2}\pi}n\sum_{k=1}^n(-1)^{k+1}\cos^{n-1}\alpha_k \tag1 \\
&\int_0^{\pi/2}\frac1{\sin^{2n+1}x+\cos^{2n+1}x}\ dx \\
=&\ \frac{2^{n+2}}{2n+1}\bigg( \frac{\coth^{-1}\sqrt2}{2\sqrt2}+\sum_{k=1}^n\frac{(-1)^{k}\coth^{-1}\sqrt{{\sec \beta_k}+1}}{\sec^{n-1}\beta_k\sec\frac{\beta_k}2\sqrt{{\sec \beta_k}+1}} \bigg) \tag2 \\
\end{align}
where $\alpha_k=\frac{(2k-1)\pi}{2n}$ and $\beta_k=\frac{2\pi k}{2n+1}$.
Proof:
Rewrite the integrands as
\begin{align}
&\frac1{\sin^{2n}x+\cos^{2n}x}
=\frac {(\tan^2x+1)^{n-1}\sec^2x}{\tan^{2n}+1} \tag3 \\
& \frac1{\sin^{2n+1}x+\cos^{2n+1}x}
= \frac {(\tan^2x+1)^{n}\sec x}{\tan^{2n+1}+1} \tag4\\
\end{align}
Utilize the partial fractionalizations below
\begin{align}
&\frac {(y^2+1)^{n-1}}{y^{2n}+1}= \frac{2^{n-1}}n\sum_{k=1}^n(-1)^{k+1}\frac{\sin \alpha_k \cos^{n-1}\alpha_k}{y^2+2y\cos \alpha_k +1}\\
& \frac {(y^2+1)^{n}}{y^{2n+1}+1}
=\frac{2^{n}}{2n+1}\bigg( \frac1{y+1}+2\sum_{k=1}^n(-1)^{k}\frac{(y+1)\cos \frac{\beta_k}2\cos^{n}\beta_k}{y^2+2y\cos \beta_k +1} \bigg)\\
\end{align}
and substitute above into (3) and (4) with $y=\tan x$
\begin{align}
&\frac1{\sin^{2n}x+\cos^{2n}x}
=\frac{2^{n-1}}n\sum_{k=1}^n(-1)^{k+1}\frac{\sin \alpha_k \cos^{n-1}\alpha_k}{1+\cos \alpha_k \sin 2x}\tag5 \\
& \frac1{\sin^{2n+1}x+\cos^{2n+1}x}\\
= &\ \frac{2^{n}}{2n+1}\bigg( \frac1{\sin x+\cos x}+2\sum_{k=1}^n(-1)^{k}\frac{(\sin x+\cos x)\cos \frac{\beta_k}2\cos^{n}\beta_k}{1+\cos \beta_k \sin2x} \bigg)\tag6 \\
\end{align}
Integrate piecewise the individual integrands in (5) and (6) to arrive at the general close-form solutions (1) and (2), respectively.
Examples:
Listed below are some explicit solutions resulting from (1) and (2)
\begin{align}
&\text{Even:}\\
&\int_0^{\pi/2}\frac1{\sin^4 x+\cos^4 x}dx
=\frac\pi{\sqrt2} \\
&\int_0^{\pi/2}\frac1{\sin^6 x+\cos^6 x}dx=\pi \\
&\int_0^{\pi/2}\frac1{\sin^8 x+\cos^8 x}dx=\frac\pi2 \sqrt{10-\sqrt2} \\
&\int_0^{\pi/2}\frac1{\sin^{10} x+\cos^{10} x}dx=\sqrt5 \pi \\
&\int_0^{\pi/2}\frac1{\sin^{12} x+\cos^{12} x}dx=\frac{\pi}{3\sqrt2}(11\sqrt3-4) \\
&\int_0^{\pi/2}\frac1{\sin^{14} x+\cos^{14} x}dx=\frac{64\pi}7
\bigg(\sin^6\frac\pi7- \sin^6\frac{2\pi}7 + \sin^6\frac{3\pi}7\bigg) \\
\\
&\text{Odd:}\\
&\int_0^{\pi/2}\frac1{\sin^{3} x+\cos^{3} x}dx=
\frac{2\sqrt2}3\coth^{-1}\sqrt2+\frac\pi3 \\
&\int_0^{\pi/2}\frac1{\sin^{5} x+\cos^{5} x}dx=
\frac45 \bigg( \sqrt2 \coth^{-1}\sqrt2 \\
&\hspace{5cm} -\frac{\coth^{-1}{\sqrt{\sqrt5+2}}}{\sqrt{\sqrt5+2}} + \frac{\cot^{-1}{\sqrt{\sqrt5-2}}}{\sqrt{\sqrt5-2}}\bigg) \\
&\int_0^{\pi/2}\frac1{\sin^{7} x+\cos^{7} x}dx=
\frac{32}7 \bigg( \frac{\coth^{-1}\sqrt2 }{2\sqrt2}\\
&\hspace{5cm}
-\cos^2\frac{2\pi}7\frac{\coth^{-1}{\sqrt{\sec\frac{2\pi}7+1}}}{\sec\frac\pi7\sqrt{\sec\frac{2\pi}7+1}}\\
&\hspace{5cm}
-\cos^2\frac{3\pi}7\frac{\cot^{-1}{\sqrt{\sec\frac{3\pi}7-1}}}{\sec\frac{2\pi}7\sqrt{\sec\frac{3\pi}7-1}}\\
&\hspace{5cm}
+\cos^2\frac{\pi}7\frac{\cot^{-1}{\sqrt{\sec\frac{\pi}7-1}}}{\sec\frac{3\pi}7\sqrt{\sec\frac{\pi}7-1}}\ \ \bigg) \\
&\int_0^{\pi/2}\frac1{\sin^{9} x+\cos^{9} x}dx=
\frac{64}9 \bigg( \frac{\coth^{-1}\sqrt2 }{2\sqrt2}-\frac\pi{64}\\
&\hspace{5cm}
-\cos^3\frac{2\pi}9\frac{\coth^{-1}{\sqrt{\sec\frac{2\pi}9+1}}}{\sec\frac\pi9\sqrt{\sec\frac{2\pi}9+1}}\\
&\hspace{5cm}
+\cos^3\frac{4\pi}9\frac{\coth^{-1}{\sqrt{\sec\frac{4\pi}9+1}}}{\sec\frac{2\pi}9\sqrt{\sec\frac{4\pi}9+1}}\\
&\hspace{5cm}
+\cos^3\frac{\pi}9\frac{\cot^{-1}{\sqrt{\sec\frac{\pi}9-1}}}{\sec\frac{4\pi}9\sqrt{\sec\frac{\pi}9-1}}\ \ \bigg) \\
\end{align}