We know a simple rule that each cyclic group of order $n$ is isomorphic to $\mathbb{Z}_n $.
So, $G \cong \mathbb{Z}_m $ and $G' \cong \mathbb{Z}_n $.
So, $ G × G' \cong \mathbb{Z}_m × \mathbb{Z}_n $.
As, $gcd(m,n)=1 $, $ \mathbb{Z}_m × \mathbb{Z}_n \cong \mathbb{Z}_{mn} $.
Since, $\mathbb{Z}_{mn} $ is cyclic group of order $mn$.
So, , as, $ G × G' \cong \mathbb{Z}_{mn} $, , $ G × G' $ becomes cyclic group of order $mn$.
Edit: why? , $\mathbb{Z}_{mn} \cong \mathbb{Z}_m × \mathbb{Z}_n $
As, $\mathbb{Z}_{mn} $ is cyclic, it has normal subgroup of order $m$ , which is isomorphic to $\mathbb{Z}_{m} $ and a normal subgroup of order $n$ , which is isomorphic to $\mathbb{Z}_{n} $
And , since ,$\mathbb{Z}_{m} ∩ \mathbb{Z}_{n} = \{0\} $, as $gcd(m,n)=1$.
By the rule of internal direct product, $\mathbb{Z}_{mn} \cong \mathbb{Z}_m × \mathbb{Z}_n $