For a positive integer $n$ let $f_n(x)=x^{n-1} +x^{n-2}+.....+x+1$ then what can we say about $\displaystyle f_p(x^{p^{c-1}})$ For every prime $p$ and every positive integer $c$ , is it reducible or irreducible over $\mathbb{Q}[x]$.
Solution i tried - I know that for $f_p(x)=x^{p-1}+x^{p-2}+....+x+1 $ is a cyclotomic polynomial and irreducible over $\mathbb{Q}[x]$ but how can i use this to show that $\displaystyle f_p(x^{p^{c-1}})$ is reducible or irreducible over $\mathbb{Q}[x]$ ?
please help
Thank you