Wallis formula is $$\prod ^{\infty }_{n=1}\dfrac{\left( 2n\right) ^{2}}{\left( 2n-1\right) \left( 2n+1\right) }=\dfrac{\pi }{2}$$
$$\lim _{n\rightarrow \infty }\dfrac{2^{2n}e^{-n}n^{n}n!}{\left( 2n\right) !} \tag{1}$$ I want to prove Stirling's formula$(\lim _{n\rightarrow \infty }\dfrac{n!}{\sqrt{n}}\left( \dfrac{e}{n}\right) ^{n}=\sqrt{2\pi } )$ using Wallis formula and $(1)$.
I know method not using $(1)$ but when I use $(1)$, I don't know how to do it.