I'm reading the section Maps between topological space from Isham CJ. Modern differential geometry for physicists. World Scientific; 1999.. Here he defines the map between two topological space $$ f:X \to Y $$ Induces a map from $P(X)$ to $P(Y)$, which is defined on a subset $A \subset X$ as $$ f(A) := \{\:f(x) \in Y |\: x \in A \:\} $$ and has the properties
$$ f(A \cup B) = f(A) \cup f(B) \\ f(A \cap B) \subset f(A) \cap f(B) $$
On the other hand, the inverse map from $P(Y)$ to $P(X)$ is $$ f^{-1}(A) = \{\: x \in X |\:f(x) \in A \:\} $$ This map has the following two properties $$ f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \\ f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) $$
My objective is to start from the definition of the map and prove all of these 4 properties.
My take on the proof
Now, starting from the definition of the induced map I can prove the first property of the map \begin{align} f(A) &= \{\:f(x_1) \in Y |\: x_1 \in A \:\} \\ f(B) &= \{\:f(x_2) \in Y |\: x_2 \in B \:\} \\ \end{align} So, \begin{align} f(A\cup B) &= \{\:f(x_3) \in Y |\: x_3 \in A \cup B \:\} \end{align} Now, $x_3 \in A \cup B$ means $ x_3 \in A \text{ OR } x_3 \in B$. So, \begin{align} f(A\cup B) &= \{\:f(x_3) \in Y |\: x_3 \in A \text{ OR } x_3 \in B \:\} \\ \implies f(A\cup B) &= \{\:f(x_3) \in Y |\: x_3 \in A \:\} \cup \{\:f(x_3) \in Y |\: x_3 \in A \:\} \\&= f(A) \cup f(B) \end{align} Thats' how I prove the first property of the map. To prove the second property in the same spirit I do \begin{align} f(A\cap B) &= \{\:f(x_3) \in Y |\: x_3 \in A \cap B \:\} \\ \implies f(A\cap B) &= \{\:f(x_3) \in Y |\: x_3 \in A \text{ AND } x_3 \in B \:\} \\ \implies f(A \cap B) &= \{\:f(x_3) \in Y |\: x_3 \in A \:\} \cap \{\:f(x_3) \in Y |\: x_3 \in B \:\}\\ &= f(A) \cap f(B) \\ \end{align} Similarly I can prove the two properties for the inverse map.
I don't know how to get the subset relation for the second property. Another concern is that, can this kind of logic be used to prove the properties for the maps?