1

I'm reading the section Maps between topological space from Isham CJ. Modern differential geometry for physicists. World Scientific; 1999.. Here he defines the map between two topological space $$ f:X \to Y $$ Induces a map from $P(X)$ to $P(Y)$, which is defined on a subset $A \subset X$ as $$ f(A) := \{\:f(x) \in Y |\: x \in A \:\} $$ and has the properties

$$ f(A \cup B) = f(A) \cup f(B) \\ f(A \cap B) \subset f(A) \cap f(B) $$

On the other hand, the inverse map from $P(Y)$ to $P(X)$ is $$ f^{-1}(A) = \{\: x \in X |\:f(x) \in A \:\} $$ This map has the following two properties $$ f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \\ f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) $$

My objective is to start from the definition of the map and prove all of these 4 properties.

My take on the proof

Now, starting from the definition of the induced map I can prove the first property of the map \begin{align} f(A) &= \{\:f(x_1) \in Y |\: x_1 \in A \:\} \\ f(B) &= \{\:f(x_2) \in Y |\: x_2 \in B \:\} \\ \end{align} So, \begin{align} f(A\cup B) &= \{\:f(x_3) \in Y |\: x_3 \in A \cup B \:\} \end{align} Now, $x_3 \in A \cup B$ means $ x_3 \in A \text{ OR } x_3 \in B$. So, \begin{align} f(A\cup B) &= \{\:f(x_3) \in Y |\: x_3 \in A \text{ OR } x_3 \in B \:\} \\ \implies f(A\cup B) &= \{\:f(x_3) \in Y |\: x_3 \in A \:\} \cup \{\:f(x_3) \in Y |\: x_3 \in A \:\} \\&= f(A) \cup f(B) \end{align} Thats' how I prove the first property of the map. To prove the second property in the same spirit I do \begin{align} f(A\cap B) &= \{\:f(x_3) \in Y |\: x_3 \in A \cap B \:\} \\ \implies f(A\cap B) &= \{\:f(x_3) \in Y |\: x_3 \in A \text{ AND } x_3 \in B \:\} \\ \implies f(A \cap B) &= \{\:f(x_3) \in Y |\: x_3 \in A \:\} \cap \{\:f(x_3) \in Y |\: x_3 \in B \:\}\\ &= f(A) \cap f(B) \\ \end{align} Similarly I can prove the two properties for the inverse map.

I don't know how to get the subset relation for the second property. Another concern is that, can this kind of logic be used to prove the properties for the maps?

Arctic Char
  • 16,007
Galilean
  • 509

1 Answers1

0

There is already a question about the intersection of preimages. In fact, the containment you write is an equality.

Also, yes, your technique should work to prove the other two statements as well.