I have the following problem:
Suppose $a$ and $k$ are positive reals and $ a^2 > 2k $. Set $x_{0} = a$ and define $x_{n}=x_{n-1} + \frac{k}{x_{n-1}}$ for $n\geq1$. Prove that $\lim_{n \to \infty}\frac{x_{n}}{\sqrt{n}}$ exists and determine its value.
For reference this is a problem in Hardy and William's The Green Book of Mathematical Problems.
I believe I have a proof of this and would appreciate if anyone could check for its correctness. I'd also appreciate if someone could give a simpler argument.
Here is my proof:
We show that $$\limsup_{n \to \infty}\frac{x_{n}}{\sqrt{n}}=\liminf_{n \to \infty}\frac{x_{n}}{\sqrt{n}}=\sqrt{2k}$$ This will show the sequence converges to $\sqrt{2k}$.
From squaring the defining relation, we get $$x_{n}^2=x_{n-1}^2+2k+\frac{k^2}{x_{n-1}^2} > x_{n-1}^2 +2k$$ Applying this same estimate $n$ times gives us the lower bound
$ x_{n}^2 > a^2+2nk$, so that $x_{n} > \sqrt{2nk+a^2}>\sqrt{2k(n+1)}$ (*)
We then get $$\liminf_{n \to \infty}\frac{x_{n}}{\sqrt{n}} \geq \liminf_{n \to \infty}\sqrt{2k\frac{n+1}{n}}=\sqrt{2k}$$
We'll now show $$\limsup_{n \to \infty}\frac{x_{n}}{\sqrt{n}}\leq\sqrt{2k}$$
We first derive an upper bound on $ x_{n}-x_{n-1} $.
Applying the estimate (*), to $x_{n-1}$ gives us $$x_{n}= x_{n-1} + \frac{k}{x_{n-1}} < x_{n-1} + \frac{k}{\sqrt{2k(n-1)+a^2}} < x_{n-1} +\sqrt{\frac{k}{2n}}$$ where $a^2 > 2k$ was used.
Thus, for $n\geq1$, we get $$x_{n}-x_{n-1} < \sqrt{\frac{k}{2n}}$$ (**)
Observe that by telescoping, we have $$x_{n}=a+\sum_{j=1}^{n}x_{j}-x_{j-1}$$
Applying the estimate (**) to each term in the summand gives $$\frac{x_{n}-a}{\sqrt{n}}=\frac{1}{\sqrt{n}}\sum_{j=1}^{n}x_{j}-x_{j-1}<\sqrt{\frac{k}{2n}}\sum_{j=1}^{n}\frac{1}{\sqrt{j}}$$
Estimating this last term with an integral gives:
$$\sqrt{\frac{k}{2n}}\sum_{j=1}^{n}\frac{1}{\sqrt{j}} < \sqrt{\frac{k}{2n}}(1+\int_{1}^{n}\frac{dx}{\sqrt{x}})=\sqrt{\frac{k}{2n}}(2\sqrt{n}-1)$$
Thus, we get $$\frac{x_{n}}{\sqrt{n}}<\frac{a}{\sqrt{n}}-\sqrt{\frac{k}{2n}}+\sqrt{2k}$$
Taking the limsup of both sides gives $$\limsup_{n \to \infty}\frac{x_{n}}{\sqrt{n}}\leq\sqrt{2k}$$ which completes the proof.
Feedback and or corrections are much appreciated!