Finding convergence or Divergence of series $$\sum^{\infty}_{n=1}\frac{2^n\cdot n^5}{n!}$$ using integral test.
What i try::
$$\frac{2}{1}+\frac{4\cdot 32}{2!}+\frac{8\cdot 3^5}{3!}+\sum^{\infty}_{n=4}\frac{2^n\cdot n^5}{n!}$$
Using $$\frac{n!}{2^n}=\frac{4!}{2^4}\frac{5}{2}\frac{6}{2}\cdots \cdots >1\Longrightarrow \frac{n!}{2^n}>1$$
So $$\frac{2^n}{n!}\leq 1\Longrightarrow \frac{2^n\cdot n^5}{n!}<n^5$$
How do i solve it Help me please, Thanks