This question is part of Calculation of inner product for Riemannian metrics.. The original question may be too long, so I break it down.
In the following $\{v_i\}$ is the basis.
For an $\langle\ ,\ \rangle$, $\langle a ,b \rangle= \sum g_{ij} v^*_i\otimes v^*_j(a,b)=\sum\langle v_i, v_j\rangle v^*_i\otimes v^*_j(a,b)$.
We may define $\langle a ,b \rangle=a_1b_1+a_2b_2+...+a_nb_n$ where $a_i, b_i$ are the coordinates with $v_1, v_2$ as basis, then $g_{i,j}=\langle v_i, v_j\rangle=\langle (0,\dots,1,\dots,0)_{i\ th\ component\ only\ being\ 1}, (0,\dots1,\dots,0)_{j\ th\ component\ only\ being\ 1}\rangle=\delta_{ij}$.
Or we may define $\langle a ,b \rangle=\lambda_1 a_1b_1+\lambda_2 a_2b_2+...+\lambda_n a_nb_n$, then $g_{i,j}=\langle v_i, v_j\rangle=\langle (0,\dots,1,\dots,0)_{i\ th\ component\ only\ being\ 1}, (0,\dots1,\dots,0)_{j\ th\ component\ only\ being\ 1}\rangle=\lambda_i\lambda_j\delta_{ij}$.
Here I regard the 'braket operation' for $a,b$ and $v_i, v_j$ as the same inner product that we define, is it correct?
From the above calculation we see $g_{ij}$ is closely related to (sort of an extention of) $\delta_{ij}$, is it correct?