Prove that $$\gcd(a_1,\ldots,a_m)\gcd(b_1,\ldots,b_n)=\gcd(a_1b_1,a_2b_2,\ldots,a_mb_n)$$ where the parentheses on the right include all $mn$ products $a_ib_j$, $i=1,\dots,m$, $j=1,\ldots,n$
My attempt was as following:
Let $d=\gcd(a_1,\ldots,a_m)$ and $b=\gcd(b_1,\ldots,b_n)$. Then $db|a_ib_j$ for all $i=1,\ldots,m$, $j=1,\ldots,n$.
Thus $$\gcd(a_1,\ldots,a_m)\gcd(b_1,\ldots,b_n)\le\gcd(a_1b_1,a_2b_2,\ldots,a_mb_n)$$
So what's left is to prove that
$$\gcd(a_1,\ldots,a_m)\gcd(b_1,\ldots,b_n)\geq\gcd(a_1b_1,a_2b_2,\ldots,a_mb_n)$$
Any hint will be appreciated