I have recently come across this infinite product, and I was wondering what methods I could use to express the product in closed-form (if it is even possible):
$$\prod_{n=0}^{\infty}\dfrac{(4n+3)^{1/(4n+3)}}{(4n+5)^{1/(4n+5)}}=\dfrac{3^{1/3}}{5^{1/5}}\cdot \dfrac{7^{1/7}}{9^{1/9}}\cdot\dfrac{11^{1/11}}{13^{1/13}}\cdot\dfrac{15^{1/15}}{17^{1/17}}\cdot\dotsb$$
Thanks in advance!