(answer completed)
- Premise
The number of ways to throw $m$ fair dies, with faces numbered $[1,R]$ and obtaining a sum $S$
corresponds to
$$
\eqalign{
& {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{
{\rm 1} \le {\rm integer}\;f_{\,j} \le R \hfill \cr
f_{\,1} + f_{\,2} + \; \cdots \; + f_{\,m} = S \hfill \cr} \right.\quad \Rightarrow \cr
& \Rightarrow \quad {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{
{\rm 0} \le {\rm integer}\;x_{\,j} \le R - 1 = r \hfill \cr
x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} = S - m = s \hfill \cr} \right. \cr}
$$
and it is convenient to consider the problem in the second version given above as:
Number of ways to throw $m$ fair dies, with faces numbered $[0,r]$ and obtaining a sum $s$
That number is given by
$$ \bbox[lightyellow] {
\eqalign{
& N_b (s,r,m) = \cr
& = {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{
{\rm 0} \le {\rm integer}\;x_{\,j} \le r \hfill \cr
x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} = s \hfill \cr} \right.\quad = \cr
& = \left\{ {\matrix{
{\sum\limits_{\left( {0\, \le } \right)\,\,k\,\,\left( { \le \,{s \over {r + 1}}\, \le \,m} \right)}
{\left( { - 1} \right)^k \binom{m}{k}
\binom{ s + m - 1 - k\left( {r + 1} \right) }{ s - k\left( {r + 1} \right)}} }
& {0 \le {\rm integers}\;s,r,m} \cr
{\rm 0} & {{\rm otherwise}} \cr
} } \right. \cr}
\tag{1}}$$
as explained in this post.
I took the liberty to change your notation for keeping congruent with previous posts on the subject.
Among the various properties of $N_b$ let's cite
symmetry
$$
N_b (mr - s,r,m) = N_b (s,r,m)
$$
ogf
$$
F_b (x,r,m) = \sum\limits_{0\,\, \le \,\,s\,\,\left( { \le \,\,r\,m} \right)} {N_b (s,r,m)\;x^{\,s} }
= \left( {1 + x + \cdots + x^{\,r} } \right)^m = \left( {{{1 - x^{\,r + 1} } \over {1 - x}}} \right)^m
$$
sum
$$
\sum\limits_{\left( {0\, \le } \right)\,\,s\,\,\left( { \le \,mr} \right)} {N_b (s,r,m)} = (r + 1)^{\,m} =F_b (1,r,m)
$$
- Histogram representation
For our scope it is convenient to introduce the equivalence of the dice sum with
Number of ways to lay $s$ undistinguishable balls into $m$ distinguishable bins, each with max capacity $r$
and in particular with
Number of histograms with $m$ bars of height $[0,r]$, summing to $s$
- Extending the definition of $N_b$ and $F_b$
In the steps to follow it is of advantage to slightly modify the definition of $N_b$ and $F_b$ in order to allow
$r$ to take negative values:
$$ \bbox[lightyellow] {
\left\{ \matrix{
F_{\,b\, * } (x,r,m) = \left[ {r < 0} \right]\left[ {0 = m} \right]
+ \left[ {0 \le r} \right]\left( {1 + x + \cdots + x^{\,r} } \right)^m \hfill \cr
N_{\,b\, * } (s,r,m) = \left[ {r < 0} \right]\left[ {0 = m} \right]\left[ {0 = s} \right]
+ \left[ {0 \le r} \right]N_b (s,r,m) \hfill \cr} \right.
\tag{3}}$$
where $[P]$ denotes the Iverson bracket
- Decomposition into bins filled below, equal and above a threshold
Consider the following decomposition of $F_{b*}$
$$ \bbox[lightyellow] {
\begin{array}{l}
F_{b*} (x,r,m) = \left( {1 + x + \cdots + x^{\,r} } \right)^m = \\
= \left( {1 + x + \cdots + x^{\,t - 1} + x^{\,t} + x^{\,t + 1}
+ \cdots + x^{\,t + \left( {r - t} \right)} } \right)^m = \\
= \sum\limits_{\left\{ {\begin{array}{*{20}c} {0\, \le \,a,b,c} \\ {a + b + c\, = \,m} \\\end{array}} \right.}
{\left( \begin{array}{c} m \\ a,b,c \\ \end{array} \right)
\left( {\frac{{1 - x^{\,t} }}{{1 - x}}} \right)^{\;a} x^{\,b\,t}
\left( {x^{\,t + 1} \frac{{1 - x^{\,r - t} }}{{1 - x}}} \right)^{\,c} } = \\
= \sum\limits_{\left\{ {\begin{array}{*{20}c} {0\, \le \,a,b,c} \\ {a + b + c\, = \,m} \\\end{array}} \right.}
{\left( \begin{array}{c} m \\ a,b,c \\ \end{array} \right)
F_{b*} (x,t - 1,a)\,x^{\,b\,t} x^{\,c\,\left( {t + 1} \right)} F_{b*} (x,r - t - 1,c)} = \\
= \sum\limits_{\left\{ {\begin{array}{*{20}c} {0\, \le \,b,c} \\ {0\, \le \,b + c\, \le \,m} \\\end{array}} \right.}
{\left( \begin{array}{c} m \\ b + c \\ \end{array} \right)
\left( \begin{array}{c} b + c \\ c \\ \end{array} \right)
F_{b*} (x,t - 1,m - \left( {b + c} \right))\,x^{\,\left( {b + c} \right)\,t} x^{\,c\,} F_{b*} (x,r - t - 1,c)} = \\
= \sum\limits_{\left( {0\,\, \le } \right)\,\,q\,\,\left( { \le \,\,m} \right)}
{\left( \begin{array}{c} m \\ q \\ \end{array} \right)\,x^{\,q\,t} \,
F_{b*} (x,t - 1,m - q)\sum\limits_{\left( {0\,\, \le } \right)\,\,c\,\,\left( { \le \,\,q} \right)}
{\left( \begin{array}{c} q \\ c \\ \end{array} \right)x^{\,c\,} F_{b*} (x,r - t - 1,c)} } = \\
= \sum\limits_{\left( {0\,\, \le } \right)\,\,q\,\,\left( { \le \,\,m} \right)}
{\left( \begin{array}{c} m \\ q \\ \end{array} \right)\,x^{\,q\,t} \,
F_{b*} (x,t - 1,m - q)\left( {1 + x\frac{{1 - x^{\,r - t} }}{{1 - x}}} \right)^{\,q} } = \\
\quad \quad \vdots \\
back\;to\;start\;
\\
\end{array}
\tag{4}}$$
clearly it represents a partition of the histograms with
$a$ bins filled with less than $t$ balls,
$b$ bins filled with exactly $t$ balls,
$c$ bins filled with more than $t$ balls;
where of course $a+b+c = m$ and where $t$ is any fixed threshold between $0$ and $r$.
The presence of $t-1$ and $r-t-1$ is the motivation for using the extended definition,
which allows to uniformly cover the case in which they are negative.
The extraction of the coefficents in terms of the respective $N_{b*}$ is quite straightforward.
- solution of the problem
Using the building blocks above, we come now to solve the proposed problem, that we can translate as
given all the histograms with $m$ bins of capacity $[0,r]$, upon that we delete
$d$ bins with highest filling and sum the remaining, how many histograms will there be with a given residual sum $w$ ?
If $d=0$ we already have the answer.
For $1 \le d$ the deleted bins will have a minimum content that we denote as $u$, and there should be at least one deleted bin
with that content.
The minimum $u$ itself, in case together with the number $b$ of bins filled at $u$, will individuate a partition
of all the histograms before and upon deletion.
So we retake the situation at the para. above with $a,b,c$ indicating the number of bins $ <, \; = ,\; > \; u$ before the deletion.
Then the $d$ deleted bins shall be the total of the $c$ plus at least one of the $b$.
That is we shall have
$$
\left\{ \matrix{
a + b + c = m \hfill \cr
1 \le b \hfill \cr
0 \le c \le d - 1 \hfill \cr
1 \le d \le b + c \hfill \cr} \right.
\quad \Rightarrow \quad \left\{ \matrix{
0 \le c \le d - 1 \hfill \cr
d + e = b + c \hfill \cr
0 \le e \le m - d \hfill \cr
a = m - \left( {d + e} \right) \hfill \cr} \right.
$$
Then the solution is (almost) right at hand.
We start from (4) and insert the conditions just stated
$$ \bbox[lightyellow] {
\begin{array}{l}
\left( {1 + x + \cdots + x^{u - 1} + x^{\,u} + x^{\,u + 1} + \cdots + x^{\,u + \left( {r - u} \right)} } \right)^m = \\
= \sum\limits_{\left\{ {\begin{array}{*{20}c}
{0\, \le \,a,b,c} \\ {a + b + c\, = \,m} \\\end{array}} \right.}
{\left( \begin{array}{c} m \\ a,b,c \\ \end{array} \right)
\left( {\frac{{1 - x^{\,u} }}{{1 - x}}} \right)^{\;a} x^{\,b\,u}
\left( {x^{\,u + 1} \frac{{1 - x^{\,r - u} }}{{1 - x}}} \right)^{\,c} } \\
\quad \quad \quad \quad \Downarrow \\
\sum\limits_{\left\{ {\begin{array}{*{20}c}
{0\, \le \,a,e,c} \\ {a + e\, = \,m - d} \\ {0 \le c \le d - 1} \\\end{array}} \right.}
{\left( \begin{array}{c}
m \\ d + e \\ \end{array} \right)
\left( \begin{array}{c}
d + e \\ c \\ \end{array} \right)
\left( {\frac{{1 - x^{\,u} }}{{1 - x}}} \right)^{\;a} x^{\,e\,u} \;
\underbrace {\;x^{\,d\,u} \left( {x\frac{{1 - x^{\,r - u} }}{{1 - x}}} \right)^{\,c} }_{deleted\;part}} = \\
\sum\limits_{\left\{ {\begin{array}{*{20}c}
{0\, \le \,e\,\,\left( { \le \,m - d} \right)} \\ {0 \le c \le d - 1} \\\end{array}} \right.}
{\left( \begin{array}{c}
m \\ d + e \\ \end{array} \right)
\left( \begin{array}{c}
d + e \\ c \\ \end{array} \right)
\left( {\frac{{1 - x^{\,u} }}{{1 - x}}} \right)^{\;m - d - e} x^{\,e\,u} \;
\underbrace {\;x^{\,d\,u} x^{\,c} F_{b * } \left( {x,r - u - 1,c} \right)}_{deleted\;part}} \\
\end{array}
\tag{5.a}}$$
a comparison of a histogram wrt a version of the same arranged in a non-decreasing order
will give a visual grasp on the above.
Now we need to keep the total number of histograms while cancelling the contribution to the
exponent of $x$ of the part to be deleted: we can do that by putting $x=1$ in the concerned section
(in the expanded form of $F_{b*}$ or as a limit in the rational form)
$$ \bbox[lightyellow] {
\begin{array}{l}
F_{r * } (x,r,m,d,u)\quad \left| \begin{array}{l}
\;1 \le d \le m \\ \;0 \le u \le r \\ \end{array} \right.\quad = \\
= \sum\limits_{\left\{ {\begin{array}{*{20}c}
{0\, \le \,e\,\,\left( { \le \,m - d} \right)} \\ {0 \le c \le d - 1} \\\end{array}} \right.}
{\left( \begin{array}{c} m \\ d + e \\ \end{array} \right)\left( \begin{array}{c} d + e \\ c \\ \end{array} \right)
\left( {\frac{{1 - x^{\,u} }}{{1 - x}}} \right)^{\;m - d - e} x^{\,e\,u} \;F_{b * } \left( {1,r - u - 1,c} \right)} = \\
= \sum\limits_{0\, \le \,e\,\,\left( { \le \,m - d} \right)}
{\left( {\sum\limits_{0\, \le \,c\, \le \,d - 1} {\left( \begin{array}{c}
d + e \\ c \\ \end{array} \right)\;F_{b * } \left( {1,r - u - 1,c} \right)} } \right)
\left( \begin{array}{c} m \\ d + e \\ \end{array} \right)x^{\,e\,u} F_{b * } \left( {x,u - 1,m - d - e} \right)} = \\
= \sum\limits_{0\, \le \,e\,\,\left( { \le \,m - d} \right)}
{\left( {\sum\limits_{0\, \le \,c\, \le \,d - 1} {\left( \begin{array}{c} d + e \\ c \\ \end{array} \right)\;
\left( {r - u} \right)^c } } \right)\left( \begin{array}{c} m \\ d + e \\ \end{array} \right)x^{\,e\,u}
F_{b * } \left( {x,u - 1,m - d - e} \right)} \\ \end{array}
\tag{5.b}}$$
and finally
$$ \bbox[lightyellow] {
\eqalign{
& F_{r * } (x,r,m,d)\quad \left| \matrix{ \;1 \le d \le m \hfill \cr \;0 \le r \hfill \cr} \right.\quad = \cr
& = \sum\limits_{0\, \le \,u\,\, \le \,r} {F_{r * } (x,r,m,d,u)} = \cr
& = \sum\limits_{0\, \le \,u\,\, \le \,r} {\sum\limits_{0\, \le \,e\,\,\left( { \le \,m - d} \right)}
{\left( {\sum\limits_{0\, \le \,c\, \le \,d - 1} {\left( \matrix{ d + e \cr c \cr} \right)\;\left( {r - u} \right)^c } }
\right)\left( \matrix{ m \cr d + e \cr} \right)x^{\,e\,u} F_{b * } \left( {x,u - 1,m - d - e} \right)} } \cr}
\tag{5.c}}$$
The two formulas above check vs direct computation for low values of the parameters, giving for example

If the deletion concerns lower-filled bins instead, a tweak of the above procedure is quite immediate,
as immediate is the extraction of the coefficients in terms of $N_{b*}$.
- extension to general multinomial
Concerning your final question, instead of
$$
{1 \over {\left( {r + 1} \right)^m }}F_{b * } (x,r,m) = {1 \over {\left( {r + 1} \right)^m }}\left( {1 + x + x^{\,2} + \cdots + x^{\,r} } \right)^m
$$
we have
$$
G(x,r,m,{\bf p}_r ) = \left( {p_{\,0} + p_{\,1} x + p_{\,2} x^{\,2} + \cdots + p_{\,r} x^{\,r} } \right)^m
$$
where ${\bf p}_r$ is a vector of dimension same as $r$
Then the starting of (5.a) will be
$$
\begin{array}{l}
G(x,r,m,{\bf p}_r ) = \left( {p_{\,0} + p_{\,1} x + p_{\,2} x^{\,2} + \cdots + p_{\,r} x^{\,r} } \right)^m \\
\left( {p_{\,0} + p_{\,1} x + \cdots + p_{\,u - 1} x^{u - 1} + p_{\,u} x^{\,u} + p_{\,u + 1} x^{\,u + 1}
+ \cdots + p_{\,r} x^{\,u + \left( {r - u} \right)} } \right)^m = \\
= \sum\limits_{\left\{ {\begin{array}{*{20}c} {0\, \le \,a,b,c} \\ {a + b + c\, = \,m} \\\end{array}} \right.}
{\left( \begin{array}{c} m \\ a,b,c \\ \end{array} \right)
G(x,u - 1,a,{\bf p}_{u - 1} )p_{\,u} ^b x^{\,b\,u} x^{\,\left( {u + 1} \right)\,c}
G(x,r - u - 1,c,{\bf \tilde p}_{r - u - 1} )} \\
\end{array}
$$
where $\bf \tilde p$ indicates the queue of the vector.
The rest of the procedure is the same and leads to
$$ \bbox[lightyellow] {
\eqalign{
& G(x,r,m,{\bf p}_r ,d)\quad \left| \matrix{ \;1 \le d \le m \hfill \cr \;0 \le r \hfill \cr} \right.\quad = \cr
& = \sum\limits_{0\, \le \,u\,\, \le \,r} {\sum\limits_{0\, \le \,e\,\,\left( { \le \,m - d} \right)}
{\left( {\sum\limits_{0\, \le \,c\, \le \,d - 1} {\left( \matrix{ d + e \cr c \cr} \right)
\;p_{\,u} ^{d - c} G(x,r - u - 1,c,{\bf \tilde p}_{r - u - 1} )} } \right)
\left( \matrix{ m \cr d + e \cr} \right)p_{\,u} ^e x^{\,e\,u} G(x,u - 1,m - d - e,{\bf p}_{u - 1} )} } \cr}
\tag{6}}$$