Amazing function between $\cos(x)$ and $\frac{\sin (x)}{x}$ !
$$f(x)=\sum_{n = 0}^{\infty} \frac{(-1)^n}{(2n+\frac{1}{2})!}x^{2n}=\frac{2 }{\sqrt{\pi }}\,\,\, _1F_2\left(1;\frac{3}{4},\frac{5}{4};-\frac{x^2}{4}\right)$$
For large values of $x$, it seems to be
$$f(x)\sim\frac{\sin \left(x+\frac{\pi }{4}\right)}{\sqrt{x} }-\frac{1}{2 \sqrt{\pi } x^2}+\frac{15}{8 \sqrt{\pi } x^4}+\cdots$$
For $x=10$, the exact value is $-0.311997$ while the above truncated expansion gives $-0.311984$.
But going deeper in the simplification of the hypergeometric function
$$\color{red}{f(x)=\sqrt {\frac 2 x}\left(C\left(\sqrt{\frac{2x}{\pi }} \right) \cos (x)+S\left(\sqrt{\frac{2x}{\pi }} \right) \sin (x) \right)}$$
Edit
You must be very careful if you just sum the terms for a given value of $x$. For example, the partials sums
$$S_p=\sum_{n = 0}^{p} \frac{(-1)^n}{(2n+\frac{1}{2})!}10^{2n}$$ are given below to show the serious problems.
$$\left(
\begin{array}{cc}
p & S_p \\
0 & +1.12838 \\
1 & -28.9617 \\
2 & +162.087 \\
3 & -372.314 \\
4 & +465.962 \\
5 & -374.415 \\
6 & +210.195 \\
7 & -88.4566 \\
8 & +28.3181 \\
9 & -7.75129 \\
10 & +1.27170 \\
11 & -0.593517 \\
12 & -0.269554 \\
13 & -0.317495 \\
14 & -0.311378 \\
15 & -0.312058 \\
16 & -0.311992 \\
17 & -0.311997
\end{array}
\right)$$ So, now, how many terms to be added for a given accuracy ?
Writing
$$f(x)=\sum_{n = 0}^{p} \frac{(-1)^n}{(2n+\frac{1}{2})!}x^{2n}+\sum_{n = p+1}^{\infty} \frac{(-1)^n}{(2n+\frac{1}{2})!}x^{2n}$$ we need to find $p$ such that
$$\frac{x^{2 (p+1)}}{\left(2p+\frac{5}{2}\right)!} \leq 10^{-k}$$ that we can rewrite as
$$\left(2p+\frac{5}{2}\right)! \geq x^{2p+\frac{5}{2}} \frac {10^k}{\sqrt x} $$
Looking at this question of mine, you will notice a superb approximation proposed by @robjohn. Applied to this case, it will give
$$\color{blue}{p \sim \frac 12 \left(x\, e^{1+W(t)}-3 \right)}\qquad \text{where}\qquad \color{blue}{t=\frac{1}{2 e x}\log \left(\frac{10^{2 k}}{2 \pi x^2}\right)}$$
Using $k=6$ and $x=10$, this gives $p=16.6868$ so $p=17$ (just as in the above table).
Notice that the exact solution would be $p=16.6872$.