1

Theorem

Any linear transformation $T$ from one finite dimensional topological vector space $V$ into another finite dimensional topological vector $W$ space is necessarily continuous.

Unfortunately I don't be able to prove the statement so could someone prove it? Then if the statement is generally false is it false if $V=\Bbb R^m$ and $W=\Bbb R^m$ too? So could someone help me, please?

1 Answers1

-1

Let $T:V\longmapsto W$ a linear transformation, and $\mathcal{B}=\{e_1,\cdots,e_n\}$ a basis of V. In finite dimension all norms are equivalents, let $||x||=\sum_{i=1}^n\vert x_i\vert$, then $$||f(x)||=||f(x_1e_1+\cdots+x_ne_n)|| \leqslant |x_1|||f(e_1)||+...+|x_n||f(e_n)||$$ Let $M=\underset{i\in\{1,...,n\}}{sup}||f(e_i)||$, then $$ |x_1|||f(e_1)||+...+|x_n||f(e_n)|| \leqslant M(|x_1|+...+|x_n|)=M||x|| $$ $\implies $ $$||f(x)|| \leqslant M||x||$$

H_K
  • 694