It is possible to calculate the limit $$\lim\limits_{n \rightarrow \infty} e^{-2n}\sum_{k=0}^n \frac{(2n)^k}{k!}$$ without using CLT nor Stirling’s approximation.
Let $$S_n=1+2n+\frac{(2n)^2}{2!}+\frac{(2n)^3}{3!}+\ldots+\frac{(2n)^n}{n!}$$ and $$T_n=\frac{(2n)^{n+1}}{(n+1)!}+\frac{(2n)^{n+2}}{(n+2)!}+\frac{(2n)^{n+3}}{(n+3)!}+\ldots+\frac{(2n)^{2n}}{(2n)!}+\ldots$$ for any $n\in\mathbb{N}$.
So we get that $$e^{2n}=S_n+T_n$$ for any $n\in\mathbb{N}$.
Since the sequence $\left\{\frac{(2n)^k}{k!}\right\}_{k\in\mathbb{N}\cup\{0\}}$ is increasing for $k\le n$ (actually it is increasing for $k\le 2n-1$), it follows that $\;S_n<\frac{(n+1)(2n)^n}{n!}$ for any $n\in\mathbb{N}$.
Moreover, $\;T_n>\frac{(2n)^{2n}}{(2n)!}\;$ for any $\;n\in\mathbb{N}$.
Hence $$0<\frac{S_n}{T_n}<\frac{(n+1)(2n)^n(2n)!}{n!(2n)^{2n}}=\frac{(n+1)(2n)!}{n!(2n)^n}$$ for any $n\in\mathbb{N}$.
Let $\;\;a_n=\frac{(n+1)(2n)!}{n!(2n)^n}\;$ for any $n\in\mathbb{N}$.
It follows that $$\frac{a_{n+1}}{a_n}=\frac{(n+2)(2n+2)!}{(n+1)!(2n+2)^{n+1}}\cdot\frac{n!(2n)^n}{(n+1)(2n)!}=\frac{(n+2)(2n+1)}{(n+1)^2\left(1+\frac{1}{n}\right)^n}$$ for any $n\in\mathbb{N}$.
Since $\;\lim_\limits{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=\frac{2}{e}<\frac{4}{5}$, it follows that there exists $n_0\in\mathbb{N}$ such that $\frac{a_{n+1}}{a_n}<\frac{4}{5}$ for any $n\ge n_0$, therefore $\frac{a_n}{a_{n-1}}<\frac{4}{5}$ for any $n\ge n_0+1$ and
$a_n=\frac{a_n}{a_{n-1}}\cdot\frac{a_{n-1}}{a_{n-2}}\cdot\frac{a_{n-2}}{a_{n-3}}\cdot\ldots\cdot\frac{a_{n_0+1}}{a_{n_0}}\cdot a_{n_0}<a_{n_0}\left(\frac{4}{5}\right)^{n-n_0}$ for any $n\ge n_0+1$.
Hence $$0<\frac{S_n}{T_n}<\frac{(n+1)(2n)!}{n!(2n)^n}=a_n<a_{n_0}\left(\frac{4}{5}\right)^{n-n_0}$$ for any $n\ge n_0+1$,
and by applying Squeeze Theorem we get
$$\lim_\limits{n\rightarrow\infty} \frac{S_n}{T_n}=0.$$
Moreover, $$\lim\limits_{n \rightarrow \infty} e^{-2n}\sum_{k=0}^n \frac{(2n)^k}{k!}=\lim\limits_{n\rightarrow\infty}\frac{S_n}{e^{2n}}=\lim\limits_{n\rightarrow\infty}\frac{S_n}{S_n+T_n}=\lim\limits_{n\rightarrow\infty}\frac{\frac{S_n}{T_n}}{\frac{S_n}{T_n}+1}=0$$