0

I'm trying to find the function this series converges to. $\sum \limits_{i=0}^{\infty}{{{n+i}\choose{n}}{(\frac{a}{x})}^{i}}$

I guess it converges to $(\frac{x}{x-a})^{n+1}$. Can someone help me?

Arctic Char
  • 16,007

1 Answers1

2

By binomial theorem for any non-naturalindex, we have $$(1+z)^\nu=\sum_{k=0}^{\infty} {\nu \choose k} z^k.$$ Let $z=-x$ and $\nu=-n$, then $$(1-x)^{-n}=\sum_{k=0}^{\infty} {-n \choose k} (-x)^k$$ Now use the property that $$={-\nu \choose k}=(-1)^k {\nu+k-1 \choose k}$$ We get $$\sum_{k=0} {n+k-1 \choose k} x^k=(1-x)^{-n}$$ Replace $n$ by $n+1$ both sides, to get $$\sum_{k=0}^{\infty} {n+k \choose k} x^k=(1-x)^{-(n+1)}$$ So in your case $$\sum_{i=0}^{\infty} {n+i \choose i} (a/x)^i=(1-a/x)^{-(n+1)}=\left(\frac{x}{x-a}\right)^{n+1}$$

Z Ahmed
  • 43,235