\begin{align*}
K&=\int_0^1 \frac{\ln(1-x)\ln^3 x}{1-x}\,dx,C=\int_0^1 \frac{\ln^3 t}{1-t}\,dt\\
K&=\left[\left(\int_0^x \frac{\ln^3 t}{1-t}\,dt-C\right)\ln(1-x)\right]_0^1+\int_0^1 \frac{1}{1-x}\left(\int_0^x \frac{\ln^3 t}{1-t}\,dt-C\right)\,dx\\
&=\int_0^1 \left(\left(\int_0^1 \frac{x\ln^3(tx)}{(1-x)(1-tx)}\,dt\right)-\frac{C}{1-x}\right)\,dx\\
&=\int_0^1 \left(\left(\int_0^1 \frac{\ln^3(tx)}{(1-t)(1-x)}\,dt-\int_0^1 \frac{\ln^3(tx)}{(1-t)(1-tx)}\,dt\right)-\frac{C}{1-x}\right)\,dx\\
&=6\left(\int_0^1 \frac{\ln^2 t}{1-t}\,dt\right)\left(\int_0^1 \frac{\ln x}{1-x}\,dx\right)+\\
&\int_0^1 \left(\left(\int_0^1 \frac{\ln^3(x)}{(1-t)(1-x)}\,dt-\int_0^1 \frac{\ln^3(tx)}{(1-t)(1-tx)}\,dt\right)+\frac{C}{1-x}-\frac{C}{1-x}\right)\,dx\\
&=6\left(\int_0^1 \frac{\ln^2 t}{1-t}dt\right)\left(\int_0^1 \frac{\ln x}{1-x}dx\right)+\int_0^1 \left(\int_0^1 \frac{\ln^3(x)}{(1-t)(1-x)}dt-\int_0^1 \frac{\ln^3(tx)}{(1-t)(1-tx)}dt\right)dx\\
&=-12\zeta(2)\zeta(3)+\int_0^1 \left(\int_0^1 \frac{\ln^3(x)}{(1-t)(1-x)}dt-\int_0^1 \frac{\ln^3(tx)}{(1-t)(1-tx)}dt\right)dx\\
&=-12\zeta(2)\zeta(3)+\int_0^1 \left(\frac{C}{1-t}-\frac{1}{t(1-t)}\left(\int_0^t \frac{\ln^3 u}{1-u}du\right)\right)dt\\
0&\leq A<1\\
K(A)&=-12\zeta(2)\zeta(3)+\int_0^A \left(\frac{C}{1-t}-\frac{1}{t(1-t)}\left(\int_0^t \frac{\ln^3 u}{1-u}\,du\right)\right)\,dt\\
&=-12\zeta(2)\zeta(3)-C\ln(1-A)-\int_0^A \frac{1}{t(1-t)}\left(\int_0^t \frac{\ln^3 u}{1-u}\,du\right)\,dt\\
&=-12\zeta(2)\zeta(3)-C\ln(1-A)-\left[\ln\left(\frac{t}{1-t}\right)\left(\int_0^t \frac{\ln^3 u}{1-u}du\right)\right]_0^A+\\
&\int_0^A \frac{\ln\left(\frac{t}{1-t}\right)\ln^3 t}{1-t}dt\\
&=-12\zeta(2)\zeta(3)+\ln(1-A)\left(\left(\int_0^A \frac{\ln^3 u}{1-u}du\right)-C\right)-\ln A\left(\int_0^A \frac{\ln^3 u}{1-u}du\right)+\\
&\int_0^A \frac{\ln^4 t}{1-t}\,dt-\int_0^A \frac{\ln(1-t)\ln^3 t}{1-t}\,dt\\
K&=\lim_{A\rightarrow 1}K(A)\\
&=-12\zeta(2)\zeta(3)+\int_0^1 \frac{\ln^4 t}{1-t}\,dt-K\\
&=-12\zeta(2)\zeta(3)+24\zeta(5)-K\\
K&=\boxed{12\zeta(5)-6\zeta(2)\zeta(3)}
\end{align*}
"Easier",
\begin{align*}
U&=\int_0^1 \frac{\ln(1+x)\ln^3 x}{1-x}\,dx\\
U&\overset{\text{IBP}}=\left[\left(\int_0^x \frac{\ln^3 t}{1-t}\,dt\right)\ln(1+x)\right]_0^1-\int_0^1 \frac{1}{1+x}\left(\int_0^x\frac{\ln^3 t}{1-t}\,dt\right)\,dx\\
&=-6\zeta(4)\ln 2+\int_0^1\int_0^1 \left(\frac{\ln^3(tx)}{(1+t)(1+x)}-\frac{\ln^3(tx)}{(1+t)(1-tx)}\right)dt dx\\
&=-6\zeta(4)\ln 2+6\left(\int_0^1\frac{\ln^2 t}{1+t}dt\right)\left(\int_0^1\frac{\ln x}{1+x}dx\right)+2\left(\int_0^1\frac{\ln^3 t}{1+t}dt\right)\left(\int_0^1\frac{1}{1+x}dx\right)-\\
&\int_0^1 \frac{1}{t(1+t)}\left(\int_0^t \frac{\ln^3 u}{1-u}\,du\right)\,dt\\
&=-\frac{33}{2}\zeta(4)\ln 2-\frac{9}{2}\zeta(2)\zeta(3)-\int_0^1 \frac{1}{t(1+t)}\left(\int_0^t \frac{\ln^3 u}{1-u}\,du\right)\,dt\\
&\overset{\text{IBP}}=-\frac{33}{2}\zeta(4)\ln 2-\frac{9}{2}\zeta(2)\zeta(3)-\left[\ln\left(\frac{t}{1+t}\right)\left(\int_0^t \frac{\ln^3 u}{1-u}\,du\right)\right]_0^1+\int_0^1 \frac{\ln\left(\frac{t}{1+t}\right)\ln^3 t}{1-t}\,dt\\
&=-\frac{45}{2}\zeta(4)\ln 2-\frac{9}{2}\zeta(2)\zeta(3)+\int_0^1 \frac{\ln\left(\frac{t}{1+t}\right)\ln^3 t}{1-t}\,dt\\
&=-\frac{45}{2}\zeta(4)\ln 2-\frac{9}{2}\zeta(2)\zeta(3)+24\zeta(5)-U\\
U&=\boxed{-\frac{45}{4}\zeta(4)\ln 2-\frac{9}{4}\zeta(2)\zeta(3)+12\zeta(5)}
\end{align*}
NB:
The same method doesn't work fine for the two others integrals.
I assume that,
\begin{align}
\int_0^1 \frac{\ln^4 x}{1+x}\,dx&=\frac{45}{2}\zeta(5),
\int_0^1 \frac{\ln^4 x}{1-x}\,dx=24\zeta(5)\\
\int_0^1 \frac{\ln^3 x}{1-x}\,dx&=-6\zeta(4),
\int_0^1 \frac{\ln^3 x}{1+x}\,dx=-\frac{21}{4}\zeta(4)\\
\int_0^1 \frac{\ln^2 x}{1-x}\,dx&=2\zeta(3),
\int_0^1 \frac{\ln^2 x}{1+x}\,dx=\frac{3}{2}\zeta(3)\\
\int_0^1 \frac{\ln x}{1-x}\,dx&=-\zeta(2),
\int_0^1 \frac{\ln x}{1+x}\,dx=-\frac{1}{2}\zeta(2)\\
\end{align}
Addendum
Computation of the two other integrals.
\begin{align*}
K_1&=K,K_2=\int_0^1 \frac{\ln(1+x)\ln^3 x}{1+x}\,dx\\V&=\int_0^1 \frac{\ln(1-x)\ln^3 x}{1+x}\,dx\\
K_1+U-K_2-V&=\int_0^1 \frac{\ln(1-x^2)\ln^3 x}{1-x}\,dx-\int_0^1 \frac{\ln(1-x^2)\ln^3 x}{1+x}\,dx\\
&=\int_0^1 \frac{2x\ln(1-x^2)\ln^3 x}{1-x^2}\,dx\\
&\overset{y=x^2}=\frac{1}{8}K_1\\
V&=\frac{7}{8}K_1+U-K_2\\
\end{align*}
\begin{align*}
C_1&=\int_0^{\frac{1}{2}}\frac{\ln^4 x}{1-x}\,dx,K_3=\int_0^{\frac{1}{2}}\frac{\ln^3 x\ln(1-x)}{1-x}\,dx\\
\int_0^1 \frac{\ln^4\left(\frac{x}{1+x}\right)}{1+x}\,dx&=\int_0^1 \frac{\ln^4\left(1+x\right)}{1+x}\,dx-4\int_0^1 \frac{\ln^3\left(1+x\right)\ln x}{1+x}\,dx+\\&6\int_0^1\frac{\ln^2\left(1+x\right)\ln^2 x}{1+x}\,dx-4\int_0^1 \frac{\ln\left(1+x\right)\ln^3 x}{1+x}\,dx+\int_0^1 \frac{\ln^4 x}{1+x}\,dx\\
&=\frac{1}{5}\ln^5 2-\Big[\ln^4(1+x)\ln x\Big]_0^1+\int_0^1 \frac{\ln^4(1+x)}{x}\,dx+\\
&2\Big[\ln^3(1+x)\ln^2 x\Big]_0^1-4\int_0^1 \frac{\ln^3(1+x)\ln x}{x}\,dx-4K_1+\frac{45\zeta(5)}{2}\\
&=\frac{1}{5}\ln^5 2-4\int_0^1 \frac{\ln^3(1+x)\ln x}{x}\,dx+\int_0^1 \frac{\ln^4(1+x)}{x}\,dx-4K_2+\frac{45\zeta(5)}{2}\\
&\overset{y=\frac{1}{1+x}}=\frac{1}{5}\ln^5 2-4\int_{\frac{1}{2}}^1\frac{\ln^3 y\Big(\ln y-\ln(1-y)\Big)}{y(1-y)}dy+\int_{\frac{1}{2}}^1\frac{\ln^4 y}{y(1-y)}dy-\\&4K_2+\frac{45\zeta(5)}{2}\\
&=\frac{1}{5}\ln^5 2-3\int_{\frac{1}{2}}^1\frac{\ln^4 x}{x}\,dx-3\int_{\frac{1}{2}}^1\frac{\ln^4 x}{1-x}\,dx+4\int_{\frac{1}{2}}^1\frac{\ln^3 x\ln(1-x)}{x}\,dx+\\
&4\int_{\frac{1}{2}}^1\frac{\ln^3 x\ln(1-x)}{1-x}\,dx-4K_2+\frac{45}{2}\zeta(5)\\
&=-\frac{2}{5}\ln^5 2-3\Big(24\zeta(5)-C_1\Big)+4\int_{\frac{1}{2}}^1\frac{\ln^3 x\ln(1-x)}{x}\,dx+\\&4\Big(K_1-K3\Big)-4K_2+\frac{45}{2}\zeta(5)\\
&\overset{\text{IBP}}=-\frac{2}{5}\ln^5 2-3\Big(24\zeta(5)-C_1\Big)+\Big[\ln^4 x\ln(1-x)\Big]_{\frac{1}{2}}^1+\\&\int_{\frac{1}{2}}^1\frac{\ln^4 x}{1-x}\,dx+4\Big(K_1-K3\Big)-4K_2+\frac{45\zeta(5)}{2}\\
&=\frac{3}{5}\ln^5 2-2\Big(24\zeta(5)-C_1\Big)+4\Big(K_1-K3\Big)-4K_2+\frac{45\zeta(5)}{2}\\
\end{align*}
On the other hand,
\begin{align*}
\int_0^1 \frac{\ln^4\left(\frac{x}{1+x}\right)}{1+x}\,dx&\overset{y=\frac{x}{1+x}}=C_1
\end{align*}
Therefore,
\begin{align*}
C_1&=\frac{3}{5}\ln^5 2-2\Big(24\zeta(5)-C_1\Big)+4\Big(K_1-K3\Big)-4K_2+\frac{45}{2}\zeta(5)\\
K_2+K_3&=\frac{3}{20}\ln^5 2+\frac{1}{4}C_1+K_1-\frac{51}{8}\zeta(5)
\end{align*}
Moreover,
\begin{align*}
K_2&\overset{y=\frac{1}{1+x}}=\int_{\frac{1}{2}}^1\frac{\ln y\Big(\ln y-\ln(1+y)\Big)^3}{y}\,dy\\
&=\int_{\frac{1}{2}}^1\left(\frac{\ln^4 y}{y}-\frac{3\ln(1-y)\ln^3 y}{y}+\frac{3\ln^2(1-y)\ln^2 y}{y}-\frac{\ln^3(1-y)\ln y}{y}\right)\,dy\\
&\overset{\text{IBP}}=\frac{1}{5}\ln^5 2-\frac{3}{4}\Big[\ln^4 y\ln(1-y)\Big]_{\frac{1}{2}}^1-\frac{3}{4}\int_{\frac{1}{2}}^1 \frac{\ln^4 y}{1-y}\,dy+\Big[\ln^3 y\ln^2(1-y)\Big]_{\frac{1}{2}}^1+\\
&2\int_{\frac{1}{2}}^1 \frac{\ln^3 y\ln(1-y)}{1-y}\,dy-\int_{\frac{1}{2}}^1 \frac{\ln^3(1-y)\ln y}{y}\,dy\\
&=\frac{9}{20}\ln^5 2-\frac{3}{4}\Big(24\zeta(5)-C1\Big)+2\Big(K_1-K3\Big)-\int_{\frac{1}{2}}^1 \frac{\ln^3(1-y)\ln y}{y}\,dy\\
&\overset{z=1-y}=\frac{9}{20}\ln^5 2-\frac{3}{4}\Big(24\zeta(5)-C1\Big)+2\Big(K_1-K3\Big)-K3\\
K_2+3K_3&=\frac{9}{20}\ln^5 2-18\zeta(5)+\frac{3}{4}C_1+2K_1\\
\end{align*}
Therefore,
\begin{align*}
K_2&=\boxed{\frac{1}{2}K_1-\frac{9}{16}\zeta(5)}\\
&=\frac{1}{2}\Big(12\zeta(5)-6\zeta(2)\zeta(3)\Big)-\frac{9}{16}\zeta(5)\\
&=\boxed{\frac{87}{16}\zeta(5)-3\zeta(2)\zeta(3)}\\
V&=\frac{7}{8}K_1+\left(-\frac{45}{4}\zeta(4)\ln 2-\frac{9}{4}\zeta(2)\zeta(3)+12\zeta(5)\right)-\left(\frac{1}{2}K_1-\frac{9}{16}\zeta(5)\right)\\
&=\frac{3}{8}K_1+\frac{201}{16}\zeta(5)-\frac{45}{4}\zeta(4)\ln 2-\frac{9}{4}\zeta(2)\zeta(3)\\
&=\frac{3}{8}\Big(12\zeta(5)-6\zeta(2)\zeta(3)\Big)\Big)+\frac{201}{16}\zeta(5)-\frac{45}{4}\zeta(4)\ln 2-\frac{9}{4}\zeta(2)\zeta(3)\\
&=\boxed{\frac{273}{16}\zeta(5)-\frac{45}{4}\zeta(4)\ln 2-\frac{9}{2}\zeta(2)\zeta(3)}
\end{align*}