The general inclusion/exclusion formula for the probability that $m$ or more of the events $A_1, \dots , A_n$ occur simultaneously is
$$P_m = \sum_{\nu = 0}^{n-m} (-1)^{\nu} \binom{m+\nu-1}{m-1} S_{m+\nu}$$
where $S_1 = \sum_i P(A_i)$, $S_2 = \sum_{ij} P(A_i A_j)$, $S_3 = \sum_{ijk} P(A_i A_j A_k)$ etc.
(Reference: Equation 5.2 in section IV.5 of An Introduction to Probability Theory and Its Applications, Third Edition by William Feller)
In the case of $r$ balls in $n$ cells with $A_i$ being the event that cell $i$ is empty, we have
$$S_{\nu} = \binom{n}{\nu} \left( 1 - \frac{\nu}{n} \right)^r$$
for $0 \le \nu \le n$, so
$$x_m(r,n) = \sum_{\nu = 0}^{n-m} (-1)^{\nu} \binom{m+\nu-1}{m-1} \binom{n}{m+\nu} \left( 1 - \frac{m+\nu}{n} \right)^r$$
Now apply the identity
$$\binom{m+\nu-1}{m-1} \binom{n}{m+\nu} = \binom{n}{m} \binom{n-m}{\nu} \frac{m}{m+\nu}$$
and we have
$$x_m(r,n) = \binom{n}{m} \sum_{\nu=0}^{n-m} (-1)^{\nu} \binom{n-m}{\nu} \left( 1 - \frac{m+\nu}{n} \right)^r \frac{m}{m+\nu}$$