2

This was an exercise in a chapter of a textbook on product to sum and sum to product trigonometric identities. The following question was asked with the given hint: $$\sum_{n=0}^{49} \sin((2n+1)x) $$ Hint: multiply this sum by $2\sin(x)$

My attempt

$$\sum_{n=0}^{49} \sin((2n+1)x)=1/2\csc(x)\sum_{n=0}^{49} 2\sin(x)\sin((2n+1)x) $$ Using identity $2\sin(A)\sin(B)=\cos(A-B)-\cos(A+B)$ $$1/2\csc(x)\sum_{n=0}^{49} 2\sin(x)\sin((2n+1)x)=1/2\csc(x)\sum_{n=0}^{49} \cos(2nx)-\cos((2n+2)x)$$ How do I continue from here?

hwood87
  • 1,352

2 Answers2

2

$$S_n=\sum_{0}^{n} \sin ((2k+1)x)=\Im \sum_{k=0}^{n} e^{i(2k+1)x}=\Im e^{ix}\sum_{k=0}^{n} e^{2ikx} =\Im e^{ix} \frac{e^{2inx}-1}{e^{2ix}-1}=\Im e^{i)n+1)x} \frac{e^{i)n+1)x}-e^{-i(n+1)x}}{e^{ix}-e^{-ix}}$$ $$\implies S_n=\frac{\sin^2 (n+1)x}{\sin x}$$ So finally, $$S_{49}=\frac{\sin^2 50 x}{\sin x}$$

Z Ahmed
  • 43,235
0

These are very common summations in sequences and series in which only the terms on either ends remain. \begin{align*} &\Rightarrow\sum_{n=0}^{m} f(2nx)-f((2n+2)x)\\ &=\color{red}{f(0)}-f(2x)+f(2x)-f(4x)+\cdots -f(2mx)+f(2mx)-\color{blue}{f((2m+2)x)}\\ &=\color{red}{f(0)}-\color{blue}{f((2m+2)x)} \end{align*} where $f=\cos$ and $m\ge n$.

So, $$S=\frac{1-\cos(100x)}{2\sin x}=\frac{\sin^2 50 x}{\sin x}$$