I am trying to prove that
let $n_1,\ldots,n_k \in \Bbb Z\setminus\{0\}$. then $\gcd(n_i,n_j)=1 \forall i\neq j$ iff $\operatorname{lcm}(n_1,\ldots,n_k)=n_1\cdots n_k$
I can prove "$\Rightarrow$" this direction by the fact that $\gcd(n_1,n_1)\operatorname{lcm}(n_1,n_2)=n_1n_2$ and by induction on $k.$
But I do not know if the converse is true or not, it is obvious when $k=1$, as $\gcd(n_1,n_1)\operatorname{lcm}(n_1,n_2)=n_1n_2$. But I got stuck at extend $k$ from $2$ to any natural number.
Any suggestion will be appreciated