I'm now learning sheaf theory from Gortz and Wedhorn's Algbraic Geometry 1 - Schemes and trying to understand the direct image and the inverse image of sheaves.
In the book, the authors said that
...... Again the construction of $f^{+}\mathcal{G}$ and hence of $f^{-1} \mathcal{G}$ is functorial in $\mathcal{G}$. Therefore we obtain a functor $f^{-1}$ from the category of presheaves on $Y$ to the category of sheaves on $X$.......
Now let me clarify the notations. In the quoted sentences, $f: X \rightarrow Y$ is a continuous map and $\mathcal{G}$ is a presheaf of $Y$. A presheaf on $X$ is defined by $$ U \mapsto \mathrm{colim}_{V \supset f(U), V \subset Y \, \text{open}} \mathcal{G}(V) $$ and the restriction maps are induced by the restriction maps of $\mathcal{G}$. We denote this presheaf by $f^{+}\mathcal{G}$, and the sheafification of it by $f^{-1}\mathcal{G}$. This is the inverse image of $\mathcal{G}$ under $f$.
My question is: What does the word "functorial" mean in the quoted sentences?
I have looked up the book Categories for the Working Mathematician by Mac Lane, and only find the definition of natural when discussing natural transformations. It seems that this is the same as the word functorial? Actually I'm lost in checking from the definition and finding what I need to verify (to show that $f^{-1} \mathcal{G}$ is functorial in $\mathcal{G}$).
I've read the question and answers on What exactly is functoriality? but still feeling hard to find out what to check.
Thank you for your helps!