Problem: $2^n > n^2, \forall n \in \mathbb{N} , n \geq 5$
Base: $2^5 > 5^2$
Induction Hypothesis: Assume for $n = k \geq 5$ that $2^k>k^2$
Inductive Step: $$2^k > k^2$$ $$2^k \times 2 > k^2 \times 2$$ $$2^{k+1} > 2k^2$$
From there I can finish the proof by asserting that $k^2 > 2k+1, \forall k \in \mathbb{N} , k \geq 3$.
Do I need to prove that $k^2 > 2k+1, \forall k \in \mathbb{N} , k \geq 3$. Or can I substitute it into my inequality?