Let $T_1,T_2 : \mathbb{R}^5 \to \mathbb{R}^3$ be linear transformations such that $\text{rank }(T_1) = 3$ and $\text{nullity } (T_2) = 3$ . Let $T_3 : \mathbb{R}^3 \to \mathbb{R}^3$ be a L.T. such that $T_3 \circ T_1 = T_2$ . Find the rank of $T_3$ .
My approach :- $\text{ Rank} (T_3) = \text{dim(range set of } T_3) = \text{ dim}(T_2)$ . But how do I find the dimension of $T_2$ ?