Let $ \sum_{n=0}^{\infty}a_{n}x^{n} $ be a power series. prove that
$ \sum_{n=0}^{\infty}a_{n}x^{n},\sum_{n=0}^{\infty}\left(n+1\right)a_{n+1}x^{n} $
has the same convergence radius.
So, let $ \limsup\sqrt[n]{|a_{n}|}=\beta $
It follows that $ \limsup\sqrt[n+1]{|a_{n+1}|}=\beta $ (Im not sure about this argument, we'll sign it as (*) )
Its enough to show that $ \limsup\sqrt[n]{\left(n+1\right)|a_{n+1}|}=\beta $
Let $ \limsup\sqrt[n]{\left(n+1\right)|a_{n+1}|}=\gamma $ and we'll show that $\beta=\gamma $
From the assumption above, we can find a subsequence such that $ \lim_{k\to\infty}\sqrt[n_{k}]{|a_{n_{k}}|}=\beta$
And we can notice that :
$ \lim_{k\to\infty}\sqrt[n_{k}]{\left(n_{k}+1\right)|a_{n_{k}+1}|}=\lim_{k\to\infty}\left(n_{k}+1\right)^{\frac{1}{n_{k}}}\cdot\lim_{k\to\infty}\left(|a_{n_{k}+1}|^{\frac{1}{n_{k}+1}}\right)^{\frac{n_{k}+1}{n_{k}}} $
and because of (*)
$ \lim_{k\to\infty}\left(n_{k}+1\right)^{\frac{1}{n_{k}}}\cdot\lim_{k\to\infty}\left(|a_{n_{k}+1}|^{\frac{1}{n_{k}+1}}\right)^{\frac{n_{k}+1}{n_{k}}}=\beta $
So $ \beta \leq \gamma $
Now, we'll take a subsequence such that $ \lim_{j\to\infty}\sqrt[n_{j}]{\left(n_{j}+1\right)|a_{n_{j}+1}}=\gamma $
And we'll notice that
$ \gamma=\lim_{j\to\infty}\sqrt[n_{j}]{\left(n_{j}+1\right)|a_{n_{j}+1}|}=\lim_{j\to\infty}\left(n_{j}+1\right)^{\frac{1}{n_{j}}}\cdot\lim_{j\to\infty}|a_{n_{j}+1}|^{\frac{1}{n_{j}}}=\lim_{j\to\infty}\left(|a_{n_{j}+1}|^{\frac{1}{n_{j}+1}}\right)^{\frac{n_{j+1}}{n_{j}}}=\gamma $
Therefore, because of (*)
$ \lim_{j\to\infty}|a_{n_{j}+1}|^{\frac{1}{n_{j}+1}}=\lim_{j\to\infty}|a_{n_{j}}|^{\frac{1}{n_{j}}}=\gamma $
And thus $ \gamma \leq \beta $ and we get that $ \gamma = \beta $
Now everything depend's on the validity of (*) So I hope you could tell me if it's okay and maybe help my justify it.
I feel like it's abuse of notation because $ a_{n_{k+1}}\neq a_{n_{k}+1} $ so I dont know if my argument holds.
Thanks in advance