1

Let $f(x)=\frac{x^{n}}{e^{x}}$ and $y(x)=\ln[f(x)]=\frac{n\ln x}{x}$.

Now, using L’Hospital’s rule,

$\lim_{x \rightarrow \infty}y(x)=\lim_{x \rightarrow \infty}\frac{n\ln x}{x}=\lim_{x \rightarrow \infty}\frac{n}{x}=0$.

Thus,

$\lim_{x \rightarrow \infty}f(x)=\lim_{x \rightarrow \infty}e^{y(x)}=e^{\lim_{x \rightarrow \infty}y(x)}=e^0=1$

However, the book I follow and another question on stackexchange (What is the limit $x\to\infty$ of $x^n \cdot e^{-x}$?) say that the limit is $0$. Where am I going wrong?

Bernard
  • 175,478

1 Answers1

1

What you did is wrong. We have $\log\bigl(f(x)\bigr)=n\log(x)-x$, and $\lim_{x\to\infty}n\log(x)-x=-\infty$. Therefore, your limit is indeed equal to $0$.