$\lim _{n \rightarrow \infty}\left[(n+1) \int_{0}^{1} x^{n} \ln (1+x) d x\right]$
My work $$ \lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} \ln (1+x) d x $$ can be simplified to: $$ \begin{array}{c} \ln (2)-\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{x^{n+1}}{1+x} d x \\ \because\left|\int_{0}^{1} \frac{x^{n+1}}{1+x} d x\right| \leq \int_{0}^{1}\left|x^{n+1}\right| d x \end{array} $$ Now, here the bound $1+x$ is always greater than equal to 1 $$ \Rightarrow \frac{1}{1+x} \leq 1 $$ $$ \therefore \lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} \ln (1+x) d x=\ln (2) $$
Any shorter approach would be highly appreciated!
NB although I have tried to solve this using Dominated Convergence theorem,but couldn't make it