Show that $\det(A_n) =(a-1)^{n-1}(a+n-1)$ with K as a field and $ n \in N$
$ A_n = \begin{pmatrix} a & 1 & 1& 1 & ... & 1 \\ 1 & a & 1 & 1 & ... & 1 \\ 1 & 1 & a & 1 & ... & 1 \\ ...& ... & ... & ... & ... & ... \\ 1 & ... & ... & ... & ... & 1 \\ 1 & 1 & ... & ... & 1 & a \end{pmatrix} \in K^{nxn}$
So i subtract everything with the first column like this
$ A_n = \begin{pmatrix} a & 1 & 1& 1 & ... & 1 \\ 1-a & a-1 & 0 & 0 & ... & 0 \\ 1-a & 0 & a-1 & 0 & ... & 0 \\ ...& ... & ... & ... & ... & ... \\ 1-a & ... & ... & ... & ... & 0 \\ 1-a & 0 & ... & ... & 0 & a-1 \end{pmatrix} \in K^{nxn}$
And then i use Laplace on this
$\det(A_n)= a \cdot (a-1)^{n-1}+ \det\begin{pmatrix} 1-a & 0 & 0 & ... & 0 \\ 1-a & a-1 & 0 & ... & 0 \\ ...& ... & ... & ... & ... \\ 1-a & ... & ... & ... & 0 \\ 1-a & ... & ... & 0 & a-1 \end{pmatrix} + 0$
So $\det\begin{pmatrix} 1-a & 0 & 0 & ... & 0 \\ 1-a & a-1 & 0 & ... & 0 \\ ...& ... & ... & ... & ... \\ 1-a & ... & ... & ... & 0 \\ 1-a & ... & ... & 0 & a-1 \end{pmatrix} $ got to be $(n-1)(a-1)^{n-1}$ if my calculation is correct. But i can't find a way to 'show' it.