0

How to calculate the sum of the following series? $$(n-1)^2+(n-2)^2+...+1$$Thank you in advance

MJD
  • 65,394
  • 39
  • 298
  • 580
proofy
  • 185

2 Answers2

6

Hint:

\begin{align*} \sum\limits_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}{6}\\ \implies \sum_{k=1}^{n-1}k^2&= \hspace{1mm}? \end{align*}

eeeeeeeeee
  • 2,251
3

First recall the following: $$\sum_{k=1}^{n-1} 1 = n-1$$ $$\sum_{k=1}^{n-1} k = \dfrac{n(n-1)}2$$ Now we have the identity $$(k+1)^3 - k^3 = 3k^2 + 3k + 1$$ Write this for $k=1,2,\ldots, n-2$ and we get \begin{align} 2^3-1^3 & = 3 \cdot 1^2 + 3 \cdot 1 + 1\\ 3^3-2^3 & = 3 \cdot 2^2 + 3 \cdot 2 + 1\\ 4^3-3^3 & = 3 \cdot 3^2 + 3 \cdot 3 + 1\\ \vdots & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \vdots\\ n^3-(n-1)^3 & = 3 \cdot (n-1)^2 + 3 \cdot (n-1) + 1\\ \end{align} Add these up and note that there is a telescopic cancellation on the left hand side to give $$n^3 - 1^3 = 3 \sum_{k=1}^{n-1} k^2 + 3 \sum_{k=1}^{n-1} k + \sum_{k=1}^{n-1} 1$$ Hence, we get that \begin{align} \sum_{k=1}^{n-1} k^2 & = \dfrac{n^3 - 1}3 -\sum_{k=1}^{n-1} k - \dfrac{\sum_{k=1}^{n-1} 1}3 = \dfrac{n^3 -1}3 - \dfrac{n(n-1)}2 - \dfrac{n-1}3\\ & = \dfrac{n^3-n}3 - \dfrac{n(n-1)}2 = \dfrac{n(n-1)(2n-1)}6 \end{align}