Just a general remark, in fact $\pi(x)>\frac{x}{\ln{x}}>\sqrt{x}$ holds without assuming the conjecture. But let's use it, i.e. Legendre's conjecture to prove the inequality.
P1. Legendre's conjecture $\iff \pi\left((n+1)^2\right)-\pi\left(n^2\right)\geq 1$ for any integer $n\geq 1$
It's obvious.
If $\pi\left((n+1)^2\right)-\pi\left(n^2\right)\geq 1$, then $\{1,2,...,(n+1)^2\}$ contains more primes than $\{1,2,...,n^2\}$. Thus, there is at least one prime between $n^2$ and $(n+1)^2$.
If there is at least one prime between $n^2$ and $(n+1)^2$, then $\{1,2,...,(n+1)^2\}$ contains more primes than $\{1,2,...,n^2\}$. Thus $\pi\left((n+1)^2\right)-\pi\left(n^2\right)\geq 1$.
P2. $\pi(n^2)\geq n$, for any integer $n\geq 2$.
By induction:
- it's true for $\pi(2^2)=2\geq 2$.
- from the induction hypotheses $\pi(n^2)\geq n$ we have $$\pi\left((n+1)^2\right)=\pi\left((n+1)^2\right)-\pi\left(n^2\right)+\pi\left(n^2\right)\overset{P1}{\geq}
1+\pi\left(n^2\right)\geq
1+n$$
Finally for all $x\geq2$
$$\pi\left(x\right)\geq \pi\left(\lfloor\sqrt{x}\rfloor^2\right)\overset{P2}{\geq}\lfloor\sqrt{x}\rfloor$$
simply because
- $\pi(x)$ is ascending ($x\geq y \Rightarrow \pi(x)\geq \pi(y)$) and
- $x\geq \lfloor\sqrt{x}\rfloor^2$ for $x\geq 0$, from $$\sqrt{x}=\lfloor\sqrt{x}\rfloor + \{x\}\Rightarrow
x = \lfloor\sqrt{x}\rfloor^2 + 2 \lfloor\sqrt{x}\rfloor \{x\} +\{x\}^2 \geq \lfloor\sqrt{x}\rfloor^2$$