$i^{-3} = -\frac 1i$ but you aren't done. We want to simplify and reduce it.
We need to get rid of the $i$ in the denominator.
$-\frac 1i = \frac 1i \cdot \frac ii = -\frac i{i^2} = -\frac i{-1}= i$.
Another way of recognizing this is $i^2 = -1$
so $i^4 = (-1)^2 = 1$. $i^{-3}=1\cdot i^{-3}\cdot 1 = i^4 \cdot i^{-3}=i^{4-3} = i$.
One thing to realize is $i^k$ is cyclic. $i^1 = i; i^2 = -1; i^3 = -i; i^4=1; i^5=i$ etc. So going in the opposite direction $i^{4} = i^0 = 1; i^{3} = i^{-1} = -i; i^2 = i^{-2} = -1; i^{1} = i^{-3} = i$.
And to beat this horse to the ground:
We can verify $\frac 1i = -i$ if and only if $1 = (-i)\cdot i = -(i^2) = 1$.
And $-\frac 1i = i$ if and only if $-1 = i\cdot i$ (which it does)
And $ i^{-3} = i$ if and only if $1 = i\cdot i^3 = i^4 = (i^2)^2 = (-1)^2 =1$ (which it does)
........
And yet another way:
$i^{-3} = x$
$1 = i^3 x$
$1 = (i^2)ix$
$1=-ix$
$-1 = ix$
$-i = i\cdot i x$
$-i = -1\cdot x$
$i = x$.
So $i^{-3} = i$.