Does there exist any ring embedding from $\mathbb{Z}_p$, the ring of $p$-adic integers to $\mathbb{R}$ ?
One can realise $\mathbb{Z}_p=\varprojlim \mathbb{Z}/p^{n}\mathbb{Z}$. I can't produce any injection to $\mathbb{R}$
Does there exist any ring embedding from $\mathbb{Z}_p$, the ring of $p$-adic integers to $\mathbb{R}$ ?
One can realise $\mathbb{Z}_p=\varprojlim \mathbb{Z}/p^{n}\mathbb{Z}$. I can't produce any injection to $\mathbb{R}$