Use the Banach fixed point theorem to show that the following sequence converges. What is the limit of this sequence? $$\left(\frac{1}{3}, \frac{1}{3+\frac{1}{3}}, \frac{1}{3+\frac{1}{3+\frac{1}{3}}}, \dots\right)$$
I inferred the closed form of the sequence $$\begin{align} x_0 &= \frac{1}{3} \\ x_n &= \frac{1}{3 + x_{n-1}} \end{align}$$
and then the function that would, I assume, be that which would be applied repeatedly to converge the sequence (per the Banach fixed point theorem) $$f(x)=\frac{1}{3+x}$$
That's about as far as I know to go for sure, but I assumed then that I needed to prove $f(x)$ was a contraction mapping (as the hypothesis of the Banach fixed point theorem dictates), that is
$$d(f(x),f(y)) \leq r d(x,y)$$ where $r \in [0, 1)$, and so
$$ \begin{align} \frac{1}{3+x} - \frac{1}{3+y} &\leq r(x - y) \\ \frac{1}{(x - y)(3 + x)} - \frac{1}{(x - y)(3 + y)} &\leq r \\ \frac{-1}{(x + 3)(y + 3)} &\leq r \end{align}$$
Although I don't think the above proves anything useful at all. (Unless $(x+3)(y+3) < -1$, where it is shown that $\exists r \in [0,1) : \dots$.)
\abs#1
for that, and MathJax doesn't know how to define new commands ;) But since we know that $|x-y|\geq0$, we can safely simplify out the absolute value (except in the trivial case where $x=y$, where the inequality holds from the get-go). Then, since $x,y\geq0$, the fraction is strictly positive, satisfying $r\in [0,1)$. But what about actually finding its limit? – Sean Allred Apr 28 '13 at 11:12