I need to find the complex Fourier series of this function, and I'm having problems calculating these integers:
$$|a|<1$$
$$x\in [-\pi,\pi]$$
$$f(x)=\frac{1-a\cos(x)}{1-2a\cos(x)+a^2}$$
$$a_0=\int_{-\pi}^{\pi}\frac{1-a\cos(x)}{1-2a\cos(x)+a^2}dx$$
$$b_n=\int_{-\pi}^{\pi}\frac{1-a\cos(x)}{1-2a\cos(x)+a^2}\sin(nx)dx$$
Please help me on this integers, I can't solve them! I have no clue how to start... To get the complex serie.... Thanks