I'm trying to build an increasing $\omega^{\omega}$-sequence on the real set but I'm not sure about it. Here is my approach.
Step $0$. consider the following $\omega$-sequence
$\langle\overbrace{\;0,\;1,\;2,\; 3,\ldots}^{\omega}\;\rangle$
Step $n+1$. Divide each unit of the n step increasing sequence in $\omega$ equal parts(this can be done because of the density of the real set).
In the case of $n=0$ we get an increasing $\omega^2$-sequence, specifically, this one: $\langle\overbrace{\underbrace{\;0,\;\frac{1}{2},\;\frac{2}{3},\;\frac{3}{4},\;\ldots\;,}_{\omega}\;\underbrace{1,\;\frac{3}{2},\;\frac{5}{3},\;\frac{7}{4},\;\ldots\;}_{\omega},\;2,\;\ldots\;,\;\omega}^{\omega\;natural\;numbers}\;\rangle$
And in the case of $n=1$ we get an increasing $\omega^3$-sequence, specifically, this one: $\langle\overbrace{\underbrace{\underbrace{\;0,\ldots,\;\frac{1}{2}}_{\omega},\underbrace{\;\ldots\;,\;\frac{2}{3}}_{\omega},\underbrace{\;\ldots\;,\;\frac{3}{4}}_{\omega},\;\ldots\;,1}_{\omega}\underbrace{\underbrace{\;\ldots\;,\;\frac{3}{2}}_{\omega},\underbrace{\;\ldots\;,\;\frac{5}{3}}_{\omega},\underbrace{\;\ldots\;,\;\frac{7}{4}}_{\omega},\;\ldots\;,2}_{\omega},\;\ldots\;,\;\omega\;}^{\omega\;natural\;numbers}\rangle$
Now, the question is: Would we get an increasing $\omega^{\omega}$-sequence in the real set at the $\omega$ step?
It can be done using recursion?
Thanks in advance for you help and time.