Let $f:(-\infty,0] \to \mathbb [0,\infty)$ be a $C^1$ strictly decreasing function satisfying $f(0)=0$.
Given $c \in (-\infty,0]$, we say that $f$ is midpoint-convex at the point $c$ if
$$ f((x+y)/2) \le (f(x) + f(y))/2, $$ whenever $(x+y)/2=c$, $x,y \in (-\infty,0]$.
Question: Let $r<s<0$, and suppose that $f$ is midpoint-convex at $r$. Is $f$ midpoint-convex at $s$?