Hint
Note that
$$
\eqalign{
& S_{\,n} = {{\left( {2n} \right)!} \over {\left( {2^{\,n} n!} \right)^{\,2} }}
= {{\prod\limits_{k = 0}^{2n - 1} {2n - k} }
\over {\left( {\prod\limits_{k = 0}^{n - 1} 2 \prod\limits_{k = 0}^{n - 1} {n - k} } \right)^{\,2} }} = \cr
& = {{\prod\limits_{k = 0}^{n - 1} {2n - 2k} \;\prod\limits_{k = 0}^{n - 1} {2n - 2k - 1} }
\over {\prod\limits_{k = 0}^{n - 1} {2n - 2k} \;
\left( {\prod\limits_{k = 0}^{n - 1} 2 \prod\limits_{k = 0}^{n - 1} {n - k} } \right)}} = \cr
& = {{\prod\limits_{k = 0}^{n - 1} {n - k - 1/2} } \over {\;\prod\limits_{k = 0}^{n - 1} {n - k} }} = \cr
& = \prod\limits_{k = 0}^{n - 1} {1 - {1 \over {2\left( {n - k} \right)}}} = \prod\limits_{k = 1}^n {1 - {1 \over {2k}}} \cr}
$$
Then pass to $\ln S_n$ and to Riemann sum .
Also, restarting from the above we get
$$
\eqalign{
& S_{\,n} = {{\prod\limits_{k = 0}^{n - 1} {n - k - 1/2} } \over {\;\prod\limits_{k = 0}^{n - 1} {n - k} }}
= {{\prod\limits_{k = 0}^{n - 1} {1/2 + k} } \over {\;\prod\limits_{k = 0}^{n - 1} {1 + k} }} = \cr
& = {{\left( {1/2} \right)^{\,\overline {\,n\,} } } \over {1^{\,\overline {\,n\,} } }}
= {{\Gamma \left( {n + 1/2} \right)} \over {\Gamma \left( {1/2} \right)}}
{{\Gamma \left( 1 \right)} \over {\Gamma \left( {n + 1} \right)}}
= {{\left( {1/2} \right)^{\,\overline {\,1/2\,} } } \over {\left( {n + 1/2} \right)^{\,\overline {\,1/2\,} } }} = \cr
& = \left( \matrix{
n - 1/2 \cr
n \cr} \right) = \left( { - 1} \right)^{\,n} \left( \matrix{
- 1/2 \cr
n \cr} \right) \cr}
$$
so that
$$
\sum\limits_{0\, \le \,n} {S_{\,n} \,x^{\,n} } = {1 \over {\sqrt {1 - x} }}
$$
and there is plenty of hints for analyzing the asymptotics at different degree of approximation.