Let $f_n(x)$ be the sequence
$$f_n(y)=\left(1+\frac{y^2}{n}\right)^{-n}-e^{-y^2}\tag1$$
Since $\left(1+\frac{y^2}{n}\right)^{-n}$ monotonically decreases to $e^{-y^2}$ (See this answer as a reference), we see from $(1)$ that $f_n(y)\ge0$ for all $y\ne 0$.
Setting $f_n'(y)=0$, we find the maximum value of $f_n(y)$ occurs at some value $y^*>0$ (and $-y^*$) for which
$$e^{-{y^*}^2}=\left(1+\frac{{y^*}^2}{n}\right)^{-n-1}\tag2$$
Using $(2)$, reveals that the maximum value of $f_n(y)$ is given by
$$\begin{align}
\max_y(f_n(y))&=f_n(\pm y^*)\\\\
&=\left(1+\frac{{y^*}^2}{n}\right)^{-n}-e^{-{y^*}^2}\\\\
&=e^{-{y^*}^2}\left(1+\frac{{y^*}^2}{n}-1\right)\\\\
&=\frac{{y^*}^2e^{-{y^*}^2}}n\\\\
&\le \frac1{ne}
\end{align}$$
Hence, we find that
$$\sup_{y}\left|\left(1+\frac{y^2}{n}\right)^{-n}-e^{-y^2}\right|\le \frac{1}{ne}\to 0$$
and conclude that the sequence $\left(1+\frac{y^2}n\right)^n$ converges uniformly to $e^{-y^2}$ for $y\in \mathbb{R}$ as was to be shown!
Note that $f_n(y)$ is continuous in $y$ for all $n$ and that $\int_0^\infty f_n(y)\,dy$ converges uniformly for $n\ge 1$. Then, the Moore-Osgood Theorem guarantees that we can interchange limits so that
$$\lim_{n\to\infty}\lim_{L\to\infty}\int_0^L f_n(y)\,dy=\lim_{L\to\infty}\lim_{n\to\infty}\int_0^L f_n(y)\,dy$$
Inasmuch as $f_n(y)$ converges uniformly for all $y$, we have
$$\begin{align}
\lim_{L\to\infty}\lim_{n\to\infty}\int_0^L f_n(y)\,dy&=\lim_{L\to\infty}\int_0^L \lim_{n\to\infty} f_n(y)\,dy\\\\
&=\lim_{L\to\infty}\int_0^L e^{-y^2}\,dy\\\\
&=\frac{\sqrt\pi}{2}
\end{align}$$