We begin with the integral representation of the Gamma function as given by
$$\Gamma(z)=\int_0^\infty x^{z-1}e^{-x}\,dx\tag1$$
for $z>0$.
In the next section, we show that $\Gamma(z)$ as expressed by $(1)$ can be represented by the limit
$$\Gamma(z)= \lim_{n\to\infty}\frac{n^z\,n!}{z(z+1)(z+2)\cdots (z+n)}$$
Limit Definition of Gamma
Let $G_n(z)$ be the sequence of functions given by
$$G_n(z)=\int_0^n x^{z-1}\left(1-\frac{x}{n}\right)^n\,dx$$
I showed in THIS ANSWER, using only Bernoulli's Inequality, that the sequence $\left(1-\frac{x}{n}\right)^n$ monotonically increases for $x\le n$. Therefore, $\left|x^{z-1} \left(1-\frac{x}{n}\right)^n\right|\le x^{z-1}e^{-x}$ for $x\le n$. The Dominated Convergence Theorem guarantees that we can write
$$\begin{align}
\lim_{n\to \infty} G_n(z)=&\lim_{n\to \infty}\int_0^n x^{z-1}\left(1-\frac{x}{n}\right)^n\,dx\\\\
&=\lim_{n\to \infty}\int_0^\infty \xi_{[0,n]}\,s^{x-1}\left(1-\frac{s}{n}\right)^n\,ds\\\\
&=\int_0^\infty \lim_{n\to \infty} \left(\xi_{[0,n]}\,\left(1-\frac{x}{n}\right)^n\right)\,x^{z-1}\,\,dx\\\\
&=\int_0^\infty x^{z-1}e^{-x}\,dx\\\\
&=\Gamma(z)
\end{align}$$
ALTERNATIVE PROOF: Limit Definition of Gamma
If one is unfamiliar with the Dominated Convergence Theorem, then we can simply show that
$$\lim_{n\to \infty}\int_0^n x^{z-1}e^{-x}\left(1-e^x\left(1-\frac{x}{n}\right)^n\right)=0$$
To do this, we appeal again to the analysis in THIS ANSWER. Proceeding, we have
$$\begin{align}
1-e^x\left(1-\frac{x}{n}\right)^n &\le 1-\left(1+\frac{x}{n}\right)^n\left(1-\frac{x}{n}\right)^n\\\\
&=1-\left(1-\frac{x^2}{n^2}\right)^n\\\\
&\le 1-\left(1-\frac{x^2}{n}\right)\\\\
&=\frac{x^2}{n}
\end{align}$$
where Bernoulli's Inequality was used to arrive at the last inequality. Similarly, we see that
$$\begin{align}
1-e^x\left(1-\frac{x}{n}\right)^n &\ge 1-e^xe^{-x}\\\\
&=0
\end{align}$$
Therefore, applying the squeeze theorem yields to coveted limit
$$\lim_{n\to \infty}\int_0^n x^{z-1}e^{-x}\left(1-e^x\left(1-\frac{x}{n}\right)^n\right)=0$$
which implies $\lim_{n\to \infty}G_n(z)=\Gamma(z)$.
Integrating by parts repeatedly the integral representation of $G_n(z)$ reveals
$$G_n(z)=\frac{n^z\,n!}{z(z+1)(z+2)\cdots (z+n)}$$
so that
$$\bbox[5px,border:2px solid #C0A000]{\Gamma(z)=\lim_{n\to \infty}\frac{n^z\,n!}{z(z+1)(z+2)\cdots (z+n)}}\tag2$$
Now, we use $(2)$ to find a limit representation of the derivative of $\Gamma(z)$. To facilitate analysis, we use $(2)$ to find the logarithm of $\Gamma(z)$. Proceeding we have
$$\log\left(\Gamma(z)\right)=\lim_{n\to \infty}\left(z\log(n)+\log(n!)-\sum_{k=0}^n \log(z+k)\right)\tag3$$
Differentiating $(3)$ reveals
$$\begin{align}
\frac{\Gamma'(z)}{\Gamma(z)}&=\lim_{n\to\infty}\left(\log(n)-\sum_{k=0}^n \frac1{z+k}\right)\\\\
&=\lim_{n\to\infty}\left(\log(n)-\sum_{k=0}^n\frac1{k+1}-\sum_{k=0}^n \left(\frac1{z+k}-\frac1{k+1}\right)\right)\\\\
&=-\gamma-\sum_{k=0}^\infty \left(\frac1{z+k}-\frac1{k+1}\right)\tag4
\end{align}$$
Setting $z=1/2$ in $(4)$ and using $\Gamma(1/2)=\sqrt \pi$ yields
$$\begin{align}
\Gamma'(1/2)&=\sqrt{\pi}\left(-\gamma-\sum_{k=0}^\infty \left(\frac{1}{k+1/2}-\frac1{k+1}\right)\right)\\\\
&=\sqrt{\pi}\left(-\gamma-2\sum_{k=0}^\infty \left(\frac{1}{2k+1}-\frac1{2k+2}\right)\right)\\\\
&=\sqrt{\pi}\left(-\gamma-2\sum_{k=1}^\infty \left(\frac{1}{2k-1}-\frac1{2k}\right)\right)\\\\
&=\sqrt{\pi}\left(-\gamma-2\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k}\right)\\\\
&=-\sqrt\pi\left(\gamma+\log(4)\right)
\end{align}$$
as was to be shown!