For all $A$ and $a_i$ it follows: $$A=\sqrt{1+a_1(A+1)+(A-a_1-1)\sqrt{1+a_2(A+2)+(A-a_2)\sqrt{1+a_3(A+3)+\cdots}}}$$
Let $$A=\cos \bigg(\frac{2\pi}{17}\bigg)$$ and let $$a_i=\frac{1}{A+i}$$ then, if $B_n=A-a_n+n-2$, we have
$$\cos\bigg(\frac{2\pi}{17}\bigg)=\sqrt{2+B_1\sqrt{2+B_2\sqrt{2+B_3\sqrt{2+\cdots}}}}$$
Any number cna be expressed as an infinite-nested radical, but given that $\cos(2\pi/17)$ is pretty obscure, I think this formula is the best to apply, since it works with infinite parameters and is not periodic (making it interesting!).
Here is an interesting one for cubed root (but periodic). Note that $$\color{red}{\cos\bigg(\frac{2\pi}{17}\bigg)}^3=\frac 14\cos \bigg(\frac{6\pi}{17}\bigg)+\frac 34\color{red}{\cos\bigg(\frac{2\pi}{17}\bigg)}$$
thus
$$\cos \frac{2\pi}{17}=\sqrt[3]{\frac 14\cos \bigg(\frac{6\pi}{17}\bigg) +\frac 34\sqrt[3]{\frac 14\cos \bigg(\frac{6\pi}{17}\bigg) +\frac 34\sqrt[3]{\frac 14\cos \bigg(\frac{6\pi}{17}\bigg) +\cdots}}}$$