Let $(X,Y)$ a bivariate normal variable $f(x,y)=\frac{1}{2\pi \sqrt{1-\rho^2}}e^{\frac{1}{2(1-\rho^2)}(x^2-2\rho xy+y^2)}$. Let $Z=\frac{Y-\rho X}{\sqrt{1-\rho^2}}$.
Find the law of $Z$.
Say if $X$ and $Z$ are independent or not.
Find $\mathbb{P}(X>0,Y>0)$.
Already by eye it can be noticed that the mean vector is $\mu=\begin{bmatrix} 0\\ 0\end{bmatrix} $ and the covariance matrix is $\sum=\begin{bmatrix}1 & -\rho\\ -\rho & 1\end{bmatrix}$ . I also know that $Z=X_1+...+X_n\sim N_n(A\mu,A^T\sum A)$, thus $Z$ is a linear of $X$ and $Y$ with $\frac{1}{\sqrt{1-\rho^2}}=const.$. Can I say that $Z\sim N(0,2-2\rho)$?