0

Let $(X,Y)$ a bivariate normal variable $f(x,y)=\frac{1}{2\pi \sqrt{1-\rho^2}}e^{\frac{1}{2(1-\rho^2)}(x^2-2\rho xy+y^2)}$. Let $Z=\frac{Y-\rho X}{\sqrt{1-\rho^2}}$.

  • Find the law of $Z$.

  • Say if $X$ and $Z$ are independent or not.

  • Find $\mathbb{P}(X>0,Y>0)$.


Already by eye it can be noticed that the mean vector is $\mu=\begin{bmatrix} 0\\ 0\end{bmatrix} $ and the covariance matrix is $\sum=\begin{bmatrix}1 & -\rho\\ -\rho & 1\end{bmatrix}$ . I also know that $Z=X_1+...+X_n\sim N_n(A\mu,A^T\sum A)$, thus $Z$ is a linear of $X$ and $Y$ with $\frac{1}{\sqrt{1-\rho^2}}=const.$. Can I say that $Z\sim N(0,2-2\rho)$?

1 Answers1

1

$(Y|X=x)\sim N(\rho x; 1-\rho ^2)$

Then $Z\sim \Phi$, a standard normal

EDIT: Let's factorize the joint distribution as follows

$$f_{XY}(x,y)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2(1-\rho^2)}}\times \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}[-2\rho xy+y^2]}$$

Now let's complete the square at the esponent by summing $\pm \rho^2x^2$ and obtaining

$$f_{XY}(x,y)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2(1-\rho^2)}}\times \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}[\rho^2x^2-2\rho xy+y^2]}e^{\frac{\rho^2x^2}{2(1-\rho^2)}}$$

That is

$$f_{XY}(x,y)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\times \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}[y-\rho x]^2}$$

$$f_{XY}(x,y)=f_{X}(x)f_{Y|X}(x|y)$$

Where $f_X$ is a standard $\phi$ and $f_{Y|X}$ is a gaussian with mean $\rho x$ and variance $(1-\rho^2)$

Concluding, for evey $x$, your Z is the standardization of the $Y|X$ rv, thus $Z\sim \Phi$

tommik
  • 32,733
  • 4
  • 15
  • 34
  • Thanks for your solution. Can you please explain me how to obtain that? – Francesco Totti Jun 27 '20 at 11:18
  • 1
    @FrancescoTotti : read my edit with all the calculations :) – tommik Jun 27 '20 at 16:31
  • Really thanks for your answer! Only one doubt (but I assume that it's a typo of the text)… Is it possible that the exponential is positive? Text says $...e^{\frac{1}{2(1-\rho^2)}[...]}$ and not $...e^{-\frac{1}{2(1-\rho^2)}[...]}$. – Francesco Totti Jun 29 '20 at 08:37
  • 1
    @FrancescoTotti : it's a typo of your textbook. this is a very useful textbook https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/528870. It's in in Italian but I do not think it is a problem for you. Read Chapter 6, example 6.2 pages 135-136 and you will find the same exercise – tommik Jun 29 '20 at 09:44