Let $f_n:\mathbb{R} \to \mathbb{R}, n \in \mathbb{N}_0$ be a sequence of nonnegative, Lebesgue measurable Functions with $\int f_n d\mu_L=1$. In Addition it holds $f_n \to f_0$ $\mu_L$-almost everywhere.
1.) Proof that $lim_{n \to \infty}\int |f_n-f_0|d\mu_L=0$.
2.) Conclude for the measures $\mu_n: \mathcal{L}(\mathbb{R})\to [0,\infty], \mu_n(B)=\int 1_{B_n}f_nd\mu_L$ $,n\in \mathbb{N}_0$ that for $n \to \infty$ $\sup_{B \in \mathcal{L}(\mathbb{R})}|\mu_n(B)-\mu_0(B)|\to0$ holds.
My Suggestions:
1.) $\lim_{n \to \infty}\int |f_n-f_0|d\mu_L$=$\lim_{n \to \infty}\int f_n-f_0+2(f_0-f_n)^+ d\mu_L$ $=\lim_{n \to \infty}\int f_n d\mu_L-\int f_0 d\mu_L+2\lim_{n \to \infty}\int0.5(|f_0-f_n|+(f_0-f_n))d\mu_L$ $=\lim_{n \to \infty}\int f_n d\mu_L-\int f_0 d\mu_L+\lim_{n \to \infty}\int|f_0-f_n|d\mu_L-\lim_{n \to \infty}\int f_n d\mu_L+\int f_0 d\mu_L$
What's the point from here now? Which theorem is needed? Is there a inequality for estimation?
2.) $sup_{B \in \mathcal{L}(\mathbb{R})}|\mu_n(B)-\mu_0(B)|=sup_{B \in \mathcal{L}(\mathbb{R})}|\int_{B}f_n d \mu_L -\int_{B}f_0 d\mu_L|=sup_{B \in \mathcal{L}(\mathbb{R})}|\int_{B}(f_n-f_0)d\mu_L|$ $\le sup_{B \in \mathcal{L}(\mathbb{R})}|\int_{B}|f_n-f_0|d\mu_L|$
Since these are trivial conversions, how does someone get the connection to 1.) in a right way? I don't know over what the Integral in 1.) is integrated. I would say now if there's a measure space $(X,\mathcal{A}(=\mathcal{L}(\mathbb{R})),\mu)$
$=sup_{B \in \mathcal{L}(\mathbb{R})}|\underbrace{\int_X |f_n-f_0|d\mu_L}_{=0}-\int_{X\setminus B} |f_n-f_0|d\mu_L|$.
I would say, that because of $B\subset X$ the 2nd integral is also $0$.
Help would be great