What is the quotient of the absolute value metric in $\Bbb Z[\frac16]^+/\langle2,3\rangle$?
I'm somewhat baffled by Wikipedia's definition of a quotient pseudometric. How does it apply to the example given below of $\Bbb Z[\frac16]^+/\langle2,3\rangle,d'$?
From Wikipedia I have the definition:
If $M$ is a metric space with metric $d$, and $\sim$ is an equivalence relation on $M$, then we can endow the quotient set $M/{\sim}$ with the following (pseudo)metric. Given two equivalence classes $[x]$ and $[y]$, we define $$ d'([x],[y]) = \inf\{d(p_1,q_1)+d(p_2,q_2)+\dotsb+d(p_{n},q_{n})\} $$ where the infimum is taken over all finite sequences $(p_1, p_2, \dots, p_n)$ and $(q_1, q_2, \dots, q_n)$ with $[p_1]=[x], [q_n]=[y], [q_i]=[p_{i+1}], i=1,2,\dots, n-1$. In general this will only define a pseudometric, i.e. $d'([x],[y])=0$ does not necessarily imply that $[x]=[y]$. However for nice equivalence relations (e.g., those given by gluing together polyhedra along faces), it is a metric.
In particular I'm confused where $n$ comes from and why it's finite, when the cosets may be infinite, and how to construct the set of finite sums from which the infimum is taken. For example, if I start with the simplest possible case by assuming $n=2$ I'm struggling to define $p_2$. It looks like maybe it's saying take the shortest sequence of stepping stones from one coset to the other. The way the indexing of $p$ and $q$ coincides is confusing me. I think an example will help me best. So how do I calculate this pseudometric for my example below?
FWIW I'm aware that under the absolute value metric $d$ the cosets of this quotient contain numbers $x,y$ arbitrarily close to each other and this may yield $\forall [x]\forall [y]:d'([x],[y])=0$ but I still want to understand the metric and calculate it.
Let $M=\Bbb Z[\frac16]^+$ be the set (and multiplicative monoid) of positive rational numbers whose primes greater than $3$ have non-negative powers.
Let us assume for the sake of understanding the quotient pseudometric that $M,d$ is a metric space where $d(x,y)$ is the absolute value metric $d=\lvert x-y\rvert$.
Let $Q=M/\langle2,3\rangle$, i.e. the quotient monoid obtained using the coset of powers of $2$ and $3$: $\langle2,3\rangle=\{2^m3^n:m,n\in\Bbb Z\}$. The sets in $Q$ are of the form $x\cdot\langle2,3\rangle$ where $x$ is some 5-rough positive integer.
What does the quotient pseudometric $d'=d/{\sim}$ look like on $Q$?
For example, what are
- $d([1],[5])$
- $d([1],[13])$
- $d([13],[85])$ and how are they calculated?