0

Let $V=\mathbb{R}^n$ with an inner product. I need to show that $\operatorname{ker}(A^T) = (\operatorname{Im} A)^\perp$. I showed that $\operatorname{Im} A^T \subset \operatorname{ker}(A^T)$ but somehow I'm not able to show the other way $\operatorname{ker}(A^T) \subset \operatorname{Im} A^T$. Can someone give me just the idea how to show the other way (no full proof!)

Thank you very much! ;)

Sumanta
  • 9,534
Blue2001
  • 349

1 Answers1

2

Let $A:\Bbb{R}^n \rightarrow \Bbb{R}^m$. You want to prove that $\ker(A^T)=\text{Im}(A)^{\perp}$. Since $\text{Im}(A)=\text{Col}(A)$, column space of $A$. By defintion: \begin{align*} \text{Im}(A)^{\perp} & =\{x \in \Bbb{R}^n \, | \, x \cdot b=0 \, \forall \, b \in \text{Col}(A)\}\\ &=\{x \in \Bbb{R}^n \, | \, x \cdot b=0 \, \forall \, b \in \color{red}{\text{Row}(A^T)}\} && (\because \text{Col}(A)=\text{Row}(A^T))\\ &=\ker(A^T). \end{align*} The last equality follows from the fact that if $b \perp$ to every row of $A^T$, then $A^Tb=0$, so $b \in \ker(A^T)$.

Anurag A
  • 41,067