$\textbf{Question:}$Find all pairs $(p, q)$ of $\textbf{prime numbers}$ satisfying
$ p^3+7q=q^9+5p^2+18p.$
$\textbf{My progress:}$ I assumed first that $p,q$ are both greater than $7$ for simplicity. Then, I found the following facts:
1.7 is a quadratic residue modulo p
2.$p \equiv 1 \pmod{4}$
3.$p$ is a quadratic non-residue modulo 7.
4.$p$ is 5 modulo 7 more precisely.
5.$q$ is a quadratic residue modulo 7.