Let $B$ be the Borel sigma-algebra over $\Bbb R$ (real numbers). Let $G\subset R$ be a Borel-set. And $A_0$ the family of all subsets of $G$ which have the form $G\cap O$ for $O$ being an open subset of $R$.
Let $A_1$ be the sigma algebra over $G$ generated by $A_0$
and $A_2 = \{X\in B\mid X \subset G\}$
How to show that $A_1 = A_2$?
I would be especially interested in the direction $A_2 \subset A_1$