A homomorphism $f\colon S_5\to S_6$ is equivalent to an action of $S_5$ on the set $X:=\{1,2,3,4,5,6\}$. If this action is transitive, then there is one orbit only, necessarily of size $|X|=6$, and thence (Orbit-Stabilizer Theorem):
$$6|\operatorname{Stab}(i)|=5!, \space\forall i\in X \tag 1$$
whence:
$$|\operatorname{Stab}(i)|=20, \space\forall i\in X \tag 2$$
Now, in general, for a $G$-action on a set $X$, the kernel of the equivalent homomorphism $f\colon G\to \operatorname{Sym}(X)$ is given by:
\begin{alignat}{1}
\operatorname{ker} f &= \{g\in G\mid f_g=\iota_X\} \\
&= \{g\in G\mid f_g(x)=\iota_X(x), \forall x \in X\} \\
&= \{g\in G\mid g\cdot x=x, \forall x \in X\} \\
&= \{g\in G\mid g\in \operatorname{Stab}(x), \forall x \in X\} \\
&= \{g\in \operatorname{Stab}(x), \forall x \in X\} \\
&= \bigcap_{x\in X}\operatorname{Stab}(x) \\
\tag 3
\end{alignat}
Therefore, in our case, by $(3)$ and $(2)$:
$$|\ker f|=|\bigcap_{i\in X}\operatorname{Stab}(i)|\le 20 \tag 4$$