How to prove that $f(x)=x^7+7x^2+2$is irreducible over $\mathbb{Q}$?
I have tried to use Eisenstein's Criterion. I pick $-2$,since $$(-2)^7+7(-2)^2+2\equiv 0~~ (\mod 7)$$ Let $y=x-2$,then
$$f(x)=g(y)=-98 + 420 x - 665 x^2 + 560 x^3 - 280 x^4 + 84 x^5 - 14 x^6 + x^7.$$
We see that $7\mid a_i$,$i=0,1,\cdots,6$,$7\nmid a_7=1$,but unfortunately $7^2\mid a_0=-98$,so $g(y)$ isn't an Eisenstein polynomial.