Prove that if $x>0$, $y>0$, and $x>y$, then $x^2>y^2$.
Here is my attempt:
Since $x>0$, $y>0$, and $x>y$,
may implies that $x+y>0$ and $x-y>0$.
Thus, $(x+y)(x-y)>0$.
Simplifying this
$x^2-y^2>0$
Therefore, $x^2>y^2$.
Prove that if $x>0$, $y>0$, and $x>y$, then $x^2>y^2$.
Here is my attempt:
Since $x>0$, $y>0$, and $x>y$,
may implies that $x+y>0$ and $x-y>0$.
Thus, $(x+y)(x-y)>0$.
Simplifying this
$x^2-y^2>0$
Therefore, $x^2>y^2$.
Hint: use the fact that $x^2 - y^2 = (x+y)(x-y)$.
$x>y>0$ multiply on itself.