We have the following elements
- $\zeta_3$ is a quadratic
- $\alpha = \sqrt[3]{2}$
- $\beta = \sqrt[3]{3}$
and the following field extension degrees
- $[\mathbb Q(\zeta_3) : \mathbb Q] = 2$ (Galois)
- $[\mathbb Q(\zeta_3, \alpha) : \mathbb Q] = 6$ (Galois)
- $[\mathbb Q(\zeta_3, \beta) : \mathbb Q] = 6$ (Galois)
- $[\mathbb Q(\zeta_3, \alpha) : \mathbb Q(\zeta_3)] = 3$ (Galois)
- $[\mathbb Q(\zeta_3, \beta) : \mathbb Q(\zeta_3)] = 3$ (Galois)
Now we would like to find the degree of the composite $$\mathbb Q(\zeta_3, \alpha)\mathbb Q(\zeta_3, \beta) = \mathbb Q(\zeta_3, \alpha, \beta)$$
define the following
- $K = \mathbb Q(\zeta_3, \alpha)$
- $K' = \mathbb Q(\zeta_3, \beta)$
- $F = \mathbb Q(\zeta_3)$
We use the following lemmas (from Dummit and Foote) about composite Galois extensions:
Proposition 21: Suppose $K/F$ and $K'/F$ are Galois extensions, then $K \cap K'/F$ and $KK'/F$ are Galois extensions. (+ information about the Galois group which we will not use here).
Corollary 22: If $K \cap K'/F = F$ then $$[KK' : F] = [K : F][K' : F]$$ and the Galois group is $$\operatorname{Gal}(K/F) \times \operatorname{Gal}(K'/F).$$
We just need to show now that $$\mathbb Q(\zeta_3, \alpha) \cap \mathbb Q(\zeta_3, \beta) = \mathbb Q(\zeta_3)$$ and this holds because $\alpha$ and $\beta$ are real.