$$\sum_{n=1}^\infty\frac{(-1)^n\sin ^2n}{n}$$
Solution from the lecture notes :
$$\frac{(-1)^n\sin ^2n}{n}=\frac{(-1)^n(1-\cos > 2n)}{2n}=\frac{(-1)^n}{2n}-\frac{(-1)^n\cos 2n}{2n}$$ $\frac{(-1)^n}{2n}$ converges conditionally due to Leibniz test.
$\frac{(-1)^n\cos 2n}{2n}$ converges absolutely since $\frac{\cos 2n}{2n}$ converges due to Dirichlet test.
We conclude that the sum we started with coverges conditionally.
$\frac{(-1)^n\cos 2n}{2n}$ cannot converge absolutely because $$\left |\frac{(-1)^n\cos 2n}{2n} \right |=\left |\frac{\cos 2n}{2n} \right |>\frac{\cos^2 2n}{2n}=\frac{\frac12(1+\cos4n)}{2n}=\frac1{4n}+\frac{\cos4n}{4n}$$
This is a sum of a convergent and divergent series hence the series doesn't absolutely converge.
Am I correct and does $\sum\frac{(-1)^n\cos 2n}{2n}$ converge ?