This answer shows that, for any given two positive integers $m,n$ with $m\gt n$, there exists a rational number $r$ such that
$$2\sin(nr\pi)\cos(mr\pi)\geq 1$$
Proof :
We see that $$2\sin(nx)\cos(mx)\ge 1$$ is equivalent to
$$\sin((m+n)x)-\sin((m-n)x)\ge 1\tag1$$
To get $x$ satisfying $(1)$, let us consider $x$ such that
$$\sin((m+n)x)=1\qquad\text{and}\qquad \sin((m-n)x)\le 0\tag2$$
We have
$$\sin((m+n)x)=1\iff (m+n)x=\frac{\pi}{2}+2s\pi\iff x=\frac{4s+1}{2(m+n)}\pi$$
where $s$ is an integer. So, we get
$$\begin{align}(2)&\iff \pi+2t\pi\le (m-n)\frac{4s+1}{2(m+n)}\pi\le 2\pi+2t\pi
\\\\&\iff 4t+2\le (4s+1)\frac{m-n}{m+n}\le 4t+4\end{align}$$
where $t$ is an integer.
For any given $m,n$ with $m\gt n$, we want to find a pair of integers $(s,t)$ such that
$$4t+2\le f(s)\le 4t+4$$
where
$$f(s):=(4s+1)\frac{m-n}{m+n}$$
We know that $s=0$ doesn't work since $0\lt f(0)=\dfrac{m-n}{m+n}\lt 1$.
If either $s=1$ or $s=2$ works, then we are happy.
In the following, let us consider the case where $s=1,2$ don't work.
Suppose that $8\lt f(1)$. Then, we have $3m+13n\lt 0$ which is impossible. So, we get $f(1)\le 8$.
Suppose that $12\lt f(2)$. Then, we have $m+7n\lt 0$ which is impossible. So, we get $f(2)\le 12$.
Suppose that $0\lt f(1)\lt 2$ and $4\lt f(2)$. Then, we have $\frac 37\lt \frac nm\lt \frac{5}{13}$ which is impossible. So, if $0\lt f(1)\lt 2$, then $0\lt f(2)\lt 2$.
Suppose that $4\lt f(1)\lt f(2)\lt 6$. Then, we have $\frac 15\lt \frac nm\lt \frac 19$ which is impossible. So, if $4\lt f(1)\lt 6$, then $8\lt f(2)\lt 10$.
So, we have two cases to consider :
Case 1 : $0\lt f(1)\lt f(2)\lt 2$
We have $f(2)\lt 2\implies \dfrac{7}{11}\lt \dfrac nm$ which implies
$$0\lt f(s+1)-f(s)=\frac{4(m-n)}{m+n}=\frac{4-4\frac nm}{1+\frac nm}\lt \frac{4-4\cdot \frac{7}{11}}{1+\frac{7}{11}}=\frac 89\lt 1$$
So, it is sufficient to find the smallest integer $s$ such that $f(s)\ge 2$, i.e. $\dfrac{m+3n}{4(m-n)}\le s$. So, we see that $s=\left\lceil \dfrac{m+3n}{4(m-n)}\right\rceil$ works where we can take $t=0$ since $2\le f(s)\le 4$.
Case 2 : $4\lt f(1)\lt 6$ and $8\lt f(2)\lt 10$
We have $\dfrac{m}{n}\gt 17$ which implies
$$3=4-1\lt f(1)-f(0)= f(s+1)-f(s)=\frac{4+4\frac mn}{\frac mn-1}\lt \frac{4+4\times 17}{17-1}=\frac 92$$ So, it is sufficient to find the smallest $s$ such that $f(s)\le 4s$, i.e. $\dfrac{m-n}{8n}\le s$. So, we see that $s=\left\lceil\dfrac{m-n}{8n}\right\rceil$ works where we can take $t=s-1$ since $4(s-1)+2\le f(s)\le 4(s-1)+4$.
It follows from these that we can take
$$x=\begin{cases}\dfrac{5}{2(m+n)}\pi&\text{if $s=1$ works}
\\\\\dfrac{9}{2(m+n)}\pi&\text{if $s=1$ doesn't work, and $s=2$ works}
\\\\\dfrac{4\left\lceil \dfrac{m+3n}{4(m-n)}\right\rceil+1}{2(m+n)}\pi&\text{if $s=1,2$ don't work, and $f(2)\lt 2$}
\\\\\dfrac{4\left\lceil\dfrac{m-n}{8n}\right\rceil+1}{2(m+n)}\pi&\text{otherwise}\end{cases}$$
which can be simplified as
$$x=\begin{cases}\dfrac{5}{2(m+n)}\pi&\text{if $\ \dfrac nm\in \bigg[\dfrac 19,\dfrac 37\bigg]$}
\\\\\dfrac{9}{2(m+n)}\pi&\text{if $\ \dfrac nm\in \bigg[\dfrac{1}{17},\dfrac 19\bigg)\cup\bigg(\dfrac 37,\dfrac{7}{11}\bigg]$}
\\\\\dfrac{4\left\lceil \dfrac{m+3n}{4(m-n)}\right\rceil+1}{2(m+n)}\pi&\text{if $\ \dfrac nm\in \bigg(\dfrac{7}{11},1\bigg)$}
\\\\\dfrac{4\left\lceil\dfrac{m-n}{8n}\right\rceil+1}{2(m+n)}\pi&\text{if $\ \dfrac nm\in\bigg(0,\dfrac{1}{17}\bigg)$}\end{cases}$$